417 research outputs found

    Seismic effects of sonic booms

    Get PDF
    Measurement and interpretation of ground vibrations, produced by seismic effect of sonic boo

    A novel practical control approach for rate independent hysteretic systems

    Get PDF
    A disturbance rejection based control approach, active disturbance rejection control (ADRC), is proposed for hysteretic systems with unknown characteristics. It is an appealing alternative to hysteresis compensation because it does not require a detailed model of hysteresis, by treating the nonlinear hysteresis as a common disturbance and actively rejecting it. The stability characteristic of the ADRC is analyzed. It is shown that, in the face of the inherent dynamic uncertainties, the estimation and closed-loop tracking errors of ADRC are bounded, with their bounds monotonously decreasing with the observer and controller bandwidths, respectively. Simulation results on a typical hysteretic system further demonstrate the effectiveness of the proposed approach

    A brief description of geological and geophysical exploration of the Marysville geothermal area

    Get PDF
    Extensive geological and geophysical surveys were carried out at the Marysville geothermal area during 1973 and 1974. The area has high heat flow (up to microcalories per square centimeter-second, a negative gravity anomaly, high electrical resistivity, low seismic ground noise, and nearby microseismic activity. Significant magnetic and infrared anomalies are not associated with the geothermal area. The geothermal anomaly occupies the axial portion of a dome in Precambrian sedimentary rocks intruded by Cretaceous and Cenozoic granitic rocks. The results from a 2.4-km-deep test well indicate that the cause of the geothermal anomaly is hydrothermal convection in a Cenozoic intrusive. A maximum temperature of 95 C was measured at a depth of 500 m in the test well

    Flight and analytical investigations of a structural mode excitation system on the YF-12A airplane

    Get PDF
    A structural excitation system, using an oscillating canard vane to generate force, was mounted on the forebody of the YF-12A airplane. The canard vane was used to excite the airframe structural modes during flight in the subsonic, transonic, and supersonic regimes. Structural modal responses generated by the canard vane forces were measured at the flight test conditions by airframe-mounted accelerometers. Correlations of analytical and experimental aeroelastic results were made. Doublet lattice, steady state double lattice with uniform lag, Mach box, and piston theory all produced acceptable analytical aerodynamic results within the restrictions that apply to each. In general, the aerodynamic theory methods, carefully applied, were found to predict the dynamic behavior of the YF-12A aircraft adequately

    Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    Get PDF
    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight

    A Leptin-regulated Circuit Controls Glucose Mobilization During Noxious Stimuli

    Get PDF
    Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor–expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores

    \u3cem\u3ecatena\u3c/em\u3e-Poly[[bis(α-thenoyltrifluoroacetonato-κ\u3csup\u3e2\u3c/sup\u3eO,O\u27)copper(II)]-μ-1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene-κ\u3csup\u3e2\u3c/sup\u3eN:N\u27]

    Get PDF
    The title compound, [Cu(C8H4F3O2S)2(C12H10N4)]n or [Cu(tta)2(L2)2]n (L2 = 1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene and tta = -thenoyltrifluoroacetonate), consists of undulating chains containing two crystallographically distinct CuII centers that are each located on inversion centers. Each CuII center exhibits distorted octahedral coordination provided by two pyridyl N atoms from two equivalent L2 ligands and four O atoms from two equivalent tta ligands. The chains interact through weak C-FH-C contacts
    • …
    corecore