7 research outputs found

    XIPE: the x-ray imaging polarimetry explorer

    Get PDF
    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden

    Women, opioid use and addiction

    Full text link
    In the midst of the current coronavirus pandemic, the United States continues to struggle with an ongoing opioid epidemic, initially fueled by widespread prescribing of opioid medications during the 1990s. The primary reason for prescribing opioids is to treat pain. Women have more acute and chronic pain and have been prescribed these drugs in significantly greater numbers than men. Comparison of women and men with chronic pain also shows that women receive the majority of prescription opioids, and the use of these prescribed medications became the major pathway to misuse and addiction for women. Yet, recognition of the extent of women’s exposure to opioids and the attendant consequences has been limited. Attempts to stem the overall tide of the epidemic focused on reducing the availability of prescription opioids. However, as these medications became more difficult to obtain and treatment opportunities were limited, many turned to other synthetic opioids, such as heroin and fentanyl. Thus, the public health crisis of opioid addiction has endured. This paper highlights the importance of understanding differences among women and men in opioid use and its biological and psychosocial effects to advance the gender‐based treatment approaches and effective public health policy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166190/1/fsb221303.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/166190/2/fsb221303_am.pd

    Centering the needs of transgender, non-binary, and gender-diverse populations in neuroendocrine models of gender-affirming hormone therapy

    No full text
    The majority of studies attempting to address the healthcare needs of the millions of transgender, non-binary, and/or gender diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations. Research into the effects of exogenous hormones such as estradiol, testosterone, and progesterone has direct translational benefit for TNG individuals on gender affirming hormone therapies (GAHT). Despite this potential, endocrinological healthcare for TNG individuals remains largely unimproved. Here, we outline important areas of translational research that could address the unique healthcare needs of TNG individuals on GAHT. We highlight key biomedical questions regarding GAHT that can be investigated using animal models. We discuss how contemporary research fails to address the needs of GAHT-users and identify equitable practices for cisgender scientists engaging with this work. We conclude that if necessary and important steps are taken to address these issues, translational research on GAHT will greatly benefit the healthcare outcomes of TNG people

    XIPE: The X-ray imaging polarimetry explorer

    No full text
    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially-resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden

    XIPE: The X-ray imaging polarimetry explorer

    No full text
    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X- ray astronomers with 75% of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden

    XIPE

    Get PDF
    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially-resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden.Peer reviewe
    corecore