1,107 research outputs found

    Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests

    Full text link
    A complete discussion of tree-level flavor-changing effects in the Randall-Sundrum (RS) model with brane-localized Higgs sector and bulk gauge and matter fields is presented. The bulk equations of motion for the gauge and fermion fields, supplemented by boundary conditions taking into account the couplings to the Higgs sector, are solved exactly. For gauge fields the Kaluza-Klein (KK) decomposition is performed in a covariant R_xi gauge. For fermions the mixing between different generations is included in a completely general way. The hierarchies observed in the fermion spectrum and the quark mixing matrix are explained naturally in terms of anarchic five-dimensional Yukawa matrices and wave-function overlap integrals. Detailed studies of the flavor-changing couplings of the Higgs boson and of gauge bosons and their KK excitations are performed, including in particular the couplings of the standard W and Z bosons. A careful analysis of electroweak precision observables including the S and T parameters and the Zbb couplings shows that the simplest RS model containing only Standard Model particles and their KK excitations is consistent with all experimental bounds for a KK scale as low as a few TeV, if one allows for a heavy Higgs boson and/or for an ultra-violet cutoff below the Planck scale. The study of flavor-changing effects includes analyses of the non-unitarity of the quark mixing matrix, anomalous right-handed couplings of the W bosons, tree-level flavor-changing neutral current couplings of the Z and Higgs bosons, the rare decays t-->c(u)+Z and t-->c(u)+h, and the flavor mixing among KK fermions. The results obtained in this work form the basis for general calculations of flavor-changing processes in the RS model and its extensions.Comment: 70 pages, 12 figures. v2: Incorrect treatment of phases in zero-mode approximation corrected, and discussion of electroweak precision tests modified. v3: Additional minor modifications and typos corrected; version published in JHE

    Nonstandard electroconvection in a bent-core oxadiazole material

    Get PDF
    Electroconvection (EC) phenomena have been investigated in the nematic phase of a bent-core oxadiazole material with negative dielectric anisotropy and a frequency dependent conductivity anisotropy. The formation of longitudinal roll (LR) patterns is one of the predominant features observed in the complete frequency and voltage range studied. At voltages much above the LR threshold, various complex patterns such as the "crisscrossed" pattern, bimodal varicose, and turbulence are observed. Unusually, the nonstandard EC (ns-EC) instability in this material, is observed in a regime in which we measure the dielectric and conductivity anisotropies to be negative and positive respectively. A further significant observation is that the EC displays distinct features in the high and low temperature regimes of the nematic phase, supporting an earlier report that EC patterns could distinguish between regions that have been reported as uniaxial and biaxial nematic phases

    Effects of chemical releases by the STS-3 Orbiter on the ionosphere

    Get PDF
    The Plasma Diagnostics Package, flown aboard STS-3 as part of the first Shuttle payload (OSS-1), recorded the effects of various chemical releases from the Orbiter. Changes in the plasma environment was observed during flash evaporator system releases, water dumps and maneuvering thruster operations. During flash evaporator operations, broadband Orbiter-generated electrostatic noise was enhanced and plasma density irregularities were observed to increase by 3 to 30 times with a spectrum which rose steeply and peaked below 6 Hz. In the case of water dumps, background electrostatic noise was enhanced at frequencies below about 3 kHz and suppressed at frequencies above 2 kHz. Thruster activity also stimulated electrostatic noise with a spectrum which peaked at approximately 0.5 kHz. In addition, ions with energies up to 1 keV were seen during some thruster events

    Dark matter and nature of electroweak phase transition with an inert doublet

    Get PDF
    We provide a comprehensive and up-to-date analysis of the prospects to realize Dark Matter (DM) in the Inert Doublet Model, while simultaneously enhancing the Electroweak Phase Transition (EWPhT) such as to allow for electroweak baryogenesis. Instead of focusing on certain aspects or mass hierarchies, we perform extensive, yet fine-grained, parameter space scans, where we analyze the nature of the EWPhT in both the light and the heavy DM regions, confronting it with the amount of DM potentially residing in the lightest inert-doublet state. Thereby, we point out a viable region where a non-trivial two-step EWPhT can appear, without being in conflict with direct-detection bounds, which could leave interesting imprints in gravitational wave signatures. We propose new benchmarks with this feature as well as update benchmarks with a strong first-order transition in the light of new XENON1T limits. Moreover, taking into account these latest bounds as well as relevant collider constraints, we envisage a new region for light DM with a small mass splitting, lifting the usual assumption of exact degeneracy of the new non-DM scalars, such as to avoid collider bounds while providing a fair DM abundance over a rather large DM mass range. This follows from a detailed survey of the impact of co-annihilations on the abundance, dissecting the various channels

    Effect of magnetic field on the phase transition in a dusty plasma

    Full text link
    The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.Comment: 9 pages, 5 figure

    Holographic Composite Higgs Model Building: Soft Breaking, Maximal Symmetry, and the Higgs Mass

    Get PDF
    We study the emergence and phenomenological consequences of recently proposednew structures, namely soft breaking of the Higgs shift symmetry and `maximalsymmetry' of the composite sector, in holographic realizations of compositeHiggs models. For the former, we show that soft breaking can also successfullybe implemented in a full 5D warped model, where symmetry-restoring universalboundary conditions for the fermion fields allow to break the problematicconnection between a realistically light Higgs and anomalously light toppartners. For the latter, we demonstrate that the minimal incarnation ofmaximal symmetry in the holographic dual leads to a sharp prediction ofmh≈197m_h\approx 197 GeV for f=800f=800 GeV. We find that a viable implementation ispossible with sizable negative gauge brane kinetic terms, allowing formh=125m_h=125 GeV. Overall, both approaches offer promising directions to improvethe naturalness also of holographic realizations of composite Higgs models.<br

    PDB3: USE OF BOOTSTRAP IN A COST-OF-ILLNESS STUDY TO DERIVE ACCURACY OF ESTIMATES

    Get PDF
    Farrando, Jordi;Febles, Maria Dolors ;Henrich, Jordi;Tarrasó, Olga ;Fuertes, J.C.;Pérez, S

    Overvoltage characteristics in symmetrical monopolar HB MMC-HVDC configuration comprising long cable systems

    Get PDF
    This contribution focuses on high voltage direct current (HVDC) transmission systems comprising modular multilevel converters (MMC) equipped with half-bridge (HB) submodules and analyses cable voltage stresses during various station internal as well as dc side faults. In order to examine relevant overvoltage characteristics affecting HVDC cable systems, a systematic approach to evaluate overvoltage stresses is presented and an extensive set of time-domain simulations is analysed for schemes operating in symmetrical monopolar configuration. Obtained results are relevant for considerations on insulation co-ordination of HVDC cable systems and for a comprehensive definition of high voltage testing requirements
    • …
    corecore