294 research outputs found

    Unmanned Remotely Operated Search and Rescue Ships in the Canadian Arctic: Exploring the Opportunities, Risk Dimensions and Governance Implications

    Get PDF
    This chapter is a proactive risk exploration of hypothetical remotely operated search and rescue (SAR) ships in the Canadian Arctic. The harsh and remote environment in the region, combined with complicated coastlines and many uncharted or poorly charted traffic routes, makes it one of the most challenging SAR areas. Canada has committed itself to safety, environmental protection and sovereign presence in the area by maintaining joint SAR centres of federal government departments and mobilizing private volunteers. The characteristics of Canadian SAR response in the Arctic rest with its high dependency on heavy equipment such as aircraft, helicopters and icebreakers, entailing prolonged hours of response time. As recent climate change impacts and maritime traffic increase in the northern waters disclose safety gaps, innovation in SAR assets is anticipated. The safety gaps may be filled by state-of-the-art remote control technology. This chapter discusses remotely operated unmanned ships for SAR response, exploring their opportunities, risk dimensions and governance implications

    Utilizing geographic information systems tools for risk-informed maritime search and rescue performance evaluation

    Get PDF
    In many sea areas there is significant recreational activity, with many sailing vessels and motor boats navigating, especially in coastal areas. Search and Rescue (SAR) organizations ensure the safety of people at sea, and are relatively frequently called to perform rescue or assistance missions to people in distress. Apart from the importance of adequate operational planning and training, rescue organizations benefit from establishing a robust, effective and cost-efficient response system. Risk-informed capacity planning can serve as a decision-support tool for determining the number and location of the required search and rescue units (SRUs). The purpose of this paper is to present such a risk-informed approach, which combines analysis of historic accident and incident data of recreational boating with information derived from Geographic Information System (GIS) methods. The method is applied to a case study focusing on the risk-informed capacity evaluation of the voluntary search and rescue services in the Finnish part of the Gulf of Finland. Results indicate that the response performance for recreational boating incidents is very good in most areas.Peer reviewe

    Risk analysis in maritime transportation : principles, frameworks and evaluation

    Get PDF
    Risk analyses are widely used tools for supporting decision making. Nonetheless, many criticisms have been raised against the discipline of risk analysis, e.g. technical analyses having a narrow focus, poorly examined claims of the ability of accurately measuring risk and lack of standards for quality assurance and risk analysis evaluation. In response to these criticisms, calls have been made for increased focus on these and other foundational issues, both in the general risk analysis discipline and in the various application areas. This thesis answers these calls for research addressing the underlying concepts and principles of risk analyses, which are approached through applications focusing on the accidental risk of maritime transportation. Focusing first on a set of foundational issues underlying waterway risk analyses, it is established that many different definitions, perspectives and scientific approaches co-exist in the application area. Through two case studies of reliability of maritime risk models, previous research claiming that risk models provide unreliable decision support, are confirmed for some maritime applications, thus confirming the need for focusing on risk related principles. Subsequently, a set of principles is presented, addressing concepts and terminology, risk and prediction, risk model use and the consideration of uncertainty and bias. A framework is introduced to communicate the scientific principles adhered to in a specific risk analysis. Following this, the principles are translated in two risk analysis frameworks: one for policy-oriented and one for operational risk analysis; the first leading to a quantitative and the second to a qualitative risk characterization. In both, risk is understood as a concept referring to the possible but uncertain occurrence of a situation where something of human value is at stake. Risk models are used as putting forward an argument based on available evidence, as a tool for communication between stakeholders and as a platform for thinking. Uncertainties and value-laden biases are assessed, and some tools for communicating these are introduced. Both frameworks are illustrated by extensive case studies. The first concerns accidental risk of oil spills from tanker collisions in the Gulf of Finland. The second focuses on a risk-informed ship-ship collision alert system. A final issue addressed in the thesis concerns the evaluation of a risk analysis, i.e. principles and criteria for establishing credibility. An integrated framework for this is developed, addressing model use, model plausibility, value-related validity and process-related validity. Specific evaluation criteria are proposed and a selection of these is applied in the presented case studies

    Introduction

    Get PDF
    This chapter introduces a multidisciplinary collection of chapters addressing various aspects of governance of Arctic shipping written by leading international scholars. It investigates how ocean changes and anthropogenic impacts affect our understanding of risk, policy, management and regulation for safe navigation, environment protection, conflict management between ocean uses, and protection of Indigenous peoples’ interests in Canadian Arctic waters. The book is divided in three parts, together providing a multi-faceted and interdisciplinary view on governance of Arctic shipping. The first part addresses conceptual and empirical aspects of risk governance, management, and assessment in the Canadian Arctic. The second part focuses on the human dimensions of a changing Arctic, providing insights in Inuit perspectives and knowledge, occupational safety issues onboard cruise and other commercial vessels, and aspects of fishing vessel safety. The third part focuses on regulatory considerations of shipping and ocean use, with contributions addressing the IMO’s framework for Arctic shipping, the Polar Code implementation in Canada, and contemporary topics concerning ship emissions, heavy fuel oil, and maritime spatial planning. It is hoped that the contributions encourage further multi- and interdisciplinary work by established and emerging scholars, and that these can assist decision-makers in planning, managing, and regulating Arctic Shipping

    An analysis of ship escort and convoy operations in ice conditions

    Get PDF
    Winter navigation is a complex but common operation in the Northern Baltic Sea areas. In Finnish waters, the safety of the wintertime maritime transportation system is managed through the Finnish–Swedish winter navigation system. This system results in different operational modes of ship navigation, with vessels either navigating independently or under icebreaker assistance. A recent risk analysis indicates that during icebreaker assistance, convoys operations are among the most hazardous, with convoy collisions the most important risk events. While the accident likelihood per exposure time is rather low, accidents occur almost every winter. Even though these typically lead to less serious consequences, accidents leading to ship loss and oil pollution have occurred and may occur in the future. One aspect of ship convoy navigation in ice conditions is the distance kept between the icebreaker and the ships in the convoy, a form of the well-known ship domain concept. While operational experience naturally is a valuable source of information for decision making about the distance of navigation in convoys, systematic analyses are lacking. The aim of this paper is to investigate selected operational aspects of convoy navigation in ice conditions in the Finnish waters of the Gulf of Finland, based on data of the Automatic Identification System and sea ice hindcast data. Focus is on obtaining qualitative and quantitative knowledge concerning distances between vessels in escort and convoy operations and the respective transit speeds, conditional to ice conditions. Such empirical knowledge can support operational decision making, contributing to wintertime maritime safety.Peer reviewe

    Developing fuzzy logic strength of evidence index and application in Bayesian networks for system risk management

    Get PDF
    Digitalization is becoming a trend in our modern society and systems. Meanwhile, risk analysis and management has rooted and been applied in various fields. Therefore, there is an increasing need to integrate risk analysis and management into the coming digital society. Risk has been represented digitally by the product of probability and consequence i.e. R = P x C traditionally. However, it has been increasingly discussed to include strength of evidence (SoE) in addition to the traditional consequence (C) and probability (P). Although much advance has been achieved along this direction, there still remains challenges, e.g. ambiguity in rating SoE and visual expression of risk diagrams. This paper focuses on addressing these issues and meanwhile aims to make the risk expression fully digital so that it is more efficient and flexible to be included in a system analysis and visualization. This is achieved firstly by reviewing state-of-the-art discussions on SoE assessment in risk management and identifying the remaining challenges. Then, the paper proposes an approach to address the challenges by forming a fuzzy logic SoE index based on fuzzy logic theory, which enables a transfer from linguistic variable to a digital one with the ambiguity avoided. After the SoE index is formed, it is applied into BNs as the node size index to demonstrate its practical application. Meanwhile, with the BNs forming the infrastructure to calculate and present consequences and probabilities, it showcases a new system risk management approach. All the variables in the system can be expressed in a risk diagram. This further enables an improved risk visualization, risk management and risk communication for system analysis, towards risk digitalization.Peer reviewe

    Implementing Bayesian networks for ISO 31000:2018-based maritime oil spill risk management: State-of-art, implementation benefits and challenges, and future research directions

    Get PDF
    The risk of a large-scale oil spill remains significant in marine environments as international maritime transport continues to grow. The environmental as well as the socio-economic impacts of a large-scale oil spill could be substantial. Oil spill models and modeling tools for Pollution Preparedness and Response (PPR) can support effective risk management. However, there is a lack of integrated approaches that consider oil spill risks comprehensively, learn from all information sources, and treat the system uncertainties in an explicit manner. Recently, the use of the international ISO 31000:2018 risk management framework has been suggested as a suitable basis for supporting oil spill PPR risk management. Bayesian networks (BNs) are graphical models that express uncertainty in a probabilistic form and can thus support decision-making processes when risks are complex and data are scarce. While BNs have increasingly been used for oil spill risk assessment (OSRA) for PPR, no link between the BNs literature and the ISO 31000:2018 framework has previously been made. This study explores how Bayesian risk models can be aligned with the ISO 31000:2018 framework by offering a flexible approach to integrate various sources of probabilistic knowledge. In order to gain insight in the current utilization of BNs for oil spill risk assessment and management (OSRA-BNs) for maritime oil spill preparedness and response, a literature review was performed. The review focused on articles presenting BN models that analyze the occurrence of oil spills, consequence mitigation in terms of offshore and shoreline oil spill response, and impacts of spills on the variables of interest. Based on the results, the study discusses the benefits of applying BNs to the ISO 31000:2018 framework as well as the challenges and further research needs.Peer reviewe

    Comparison study on AIS data of ship traffic behavior

    Get PDF
    AIS (Automatic Identification System) data provides valuable input parameters in ship traffic simulation models for maritime risk analysis and the prevention of shipping accidents. This article reports on the detailed comparisons of AIS data analysis between a Dutch case and a Chinese case. This analys is focuses on restricted waterways to support inland waterway simulations, comparing the differences between a narrow waterway in the Netherlands (the Port of Rotterdam) and a wide one in China (wide water way of Yangtze River close to the SuTong Bridge). It is shown that straightforward statistical distributions can be used to characterise lateral position, speed, heading and interval times for different types and sizes of ships. However, the distributions for different characteristics of ship behaviours differ significantly
    corecore