660 research outputs found

    Improvements of the Set Up and Procedures for Beam Energy Measurements at BESSY II

    Get PDF
    With a 7 T wiggler in operation all attempts to detect the resonant depolarization of the electron spins were unsuccessful at BESSY II. This was attributed to the severely reduced degree of spin polarization of the electrons moving in the alternating fields of the strong wiggler which on the other hand nearly doubles the radiation loss per turn. The key to a clear detection of the depolarization is the improvement of the sensitivity of the polarimeter, based on the spin dependent Touschek scattering cross section and the more effective and thus full depolarization of the beam. With these improvements the high precision beam energy determination can again be performed in parallel to the normal user operation and without any noticeable perturbations to the bea

    Nature conservation in West Africa: red list for Benin

    Get PDF

    Basic information for developing a red list for Benin

    Get PDF

    Parasitoid complex of fall armyworm, spodoptera frugiperda, in Ghana and Benin

    Get PDF
    Open Access Journal; Published online: 21 Jan 2020The fall armyworm, Spodoptera frugiperda, a moth originating from the American continent, has recently invaded most African countries, where it is seriously threatening food security as a pest of cereals. The current management methods rely heavily on the use of synthetic insecticides but there is a need for more sustainable control methods, including biological control. Surveys were conducted in two West African countries, Ghana and Benin, to determine the native parasitoid complex and assess parasitism rates of S. frugiperda. Samples of S. frugiperda eggs and larvae were collected in maize fields located in 56 and 90 localities of Ghana and Benin, respectively, from July 2018 to July 2019. Ten species were found parasitizing the pest, including two egg parasitoids, one egg–larval, five larval and two larval–pupal parasitoids. The two most abundant parasitoids in both countries were two Braconidae: the egg‐larval parasitoid Chelonus bifoveolatus and the larval parasitoid Coccygidum luteum. Parasitism rates were determined in three Ghanaian regions and averages varied from 0% to 75% between sites and from 5% to 38% between regions. These data provide an important baseline for the development of various biological control options. The two egg parasitoids, Telenomus remus and Trichogramma sp. can be used in augmentative biological control and investigations should be conducted to assess how cultural practices can enhance the action of the main parasitoids, C. luteum and Ch. bifoveolatus, in the field. Understanding the parasitoid complex of S. frugiperda in Africa is also necessary before any development of classical biological controls involving the introduction of parasitoids from the Americas

    Characterization of Left-Ventricular Thrombus Formation Using High Frequency Ultrasound

    Get PDF
    Heart failure is a leading cause of death in the United States, and cardiac thrombus, a common morbidity associated with heart failure, significantly increases a patient’s risk of embolic events. The objective of this project is to characterize left-ventricular (LV) thrombus development using high frequency ultrasound imaging in a murine model. C57BL/6J wild-type mice (n=6) were injected intraperitoneally with iron dextran five times a week for six weeks to increase oxidative stress in the heart. Granulocyte-colony stimulating factor (G-CSF) was subcutaneously injected daily during the second week to initiate stem cell migration and stimulate endothelial cell activation, thus increasing the hypercoagulability state of the blood. A high-frequency, small animal ultrasound system (Vevo2100, VisualSonics FUJIFILM Inc.) and a 40 MHz central frequency transducer were used to track LV thrombus progression and evaluate LV function weekly. Four out of six mice developed thrombus, but no significant differences in LV performance were observed when compared to mice that did not form a thrombus. Further investigation is necessary to study the role of attenuated heart function on thrombus formation. Future work will incorporate a murine model of myocardial infarction to investigate if a severely compromised heart increases the risk of or accelerates LV thrombus formation. This study will aid in identifying patients who are predisposed to thrombus formation following a heart attack, leading to more effective prevention and treatment methods

    Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP) in a massively parallel supercomputing environment – a case study on JUQUEEN (IBM Blue Gene/Q)

    Get PDF
    Continental-scale hyper-resolution simulations constitute a grand challenge in characterizing non-linear feedbacks of states and fluxes of the coupled water, energy, and biogeochemical cycles of terrestrial systems. Tackling this challenge requires advanced coupling and supercomputing technologies for earth system models that are discussed in this study, utilizing the example of the implementation of the newly developed Terrestrial Systems Modeling Platform (TerrSysMP) on JUQUEEN (IBM Blue Gene/Q) of the JĂŒlich Supercomputing Centre, Germany. The applied coupling strategies rely on the Multiple Program Multiple Data (MPMD) paradigm and require memory and load balancing considerations in the exchange of the coupling fields between different component models and allocation of computational resources, respectively. These considerations can be reached with advanced profiling and tracing tools leading to the efficient use of massively parallel computing environments, which is then mainly determined by the parallel performance of individual component models. However, the problem of model I/O and initialization in the peta-scale range requires major attention, because this constitutes a true big data challenge in the perspective of future exa-scale capabilities, which is unsolved

    Stable Thermally-Modulated Nanodroplet Ultrasound Contrast Agents

    Get PDF
    Liquid perfluorocarbon-based nanodroplets are stable enough to be used in extravascular imaging, but provide limited contrast enhancement due to their small size, incompressible core, and small acoustic impedance mismatch with biological fluids. Here we show a novel approach to overcoming this limitation by using a heating–cooling cycle, which we will refer to as thermal modulation (TM), to induce echogenicity of otherwise stable but poorly echogenic nanodroplets without triggering a transient phase shift. We apply thermal modulation to high-boiling point tetradecafluorohexane (TDFH) nanodroplets stabilized with a bovine serum albumin (BSA) shell. BSA-TDFH nanodroplets with an average diameter under 300 nanometers showed an 11.9 ± 5.4 mean fold increase in echogenicity on the B-mode and a 13.9 ± 6.9 increase on the nonlinear contrast (NLC) mode after thermal modulation. Once activated, the particles maintained their enhanced echogenicity (p \u3c 0.001) for at least 13 h while retaining their nanoscale size. Our data indicate that thermally modulated nanodroplets can potentially serve as theranostic agents or sensors for various applications of contrast-enhanced ultrasound

    Murine Ultrasound-Guided Transabdominal Para-Aortic Injections of Self-Assembling Type I Collagen Oligomers

    Get PDF
    Abdominal aortic aneurysms (AAAs) represent a potentially life-threatening condition that predominantly affects the infrarenal aorta. Several preclinical murine models that mimic the human condition have been developed and are now widely used to investigate AAA pathogenesis. Cell- or pharmaceutical-based therapeutics designed to prevent AAA expansion are currently being evaluated with these animal models, but more minimally invasive strategies for delivery could improve their clinical translation. The purpose of this study was to investigate the use of self-assembling type I collagen oligomers as an injectable therapeutic delivery vehicle in mice. Here we show the success and reliability of a para-aortic, ultrasound-guided technique for injecting quickly-polymerizing collagen oligomer solutions into mice to form a collagen-fibril matrix at body temperature. A commonly used infrarenal mouse AAA model was used to determine the target location of these collagen injections. Ultrasound-guided, closed-abdominal injections supported consistent delivery of collagen to the area surrounding the infrarenal abdominal aorta halfway between the right renal artery and aortic trifurcation into the iliac and tail arteries. This minimally invasive approach yielded outcomes similar to open-abdominal injections into the same region. Histological analysis on tissue removed on day 14 post-operatively showed minimal in vivo degradation of the self-assembled fibrillar collagen and the majority of implants experienced minimal inflammation and cell invasion, further confirming this material's potential as a method for delivering therapeutics. Finally, we showed that the typical length and position of this infrarenal AAA model was statistically similar to the length and targeted location of the injected collagen, increasing its feasibility as a localized therapeutic delivery vehicle. Future preclinical and clinical studies are needed to determine if specific therapeutics incorporated into the self-assembling type I collagen matrix described here can be delivered near the aorta and locally limit AAA expansion.
    • 

    corecore