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Abstract

Abdominal aortic aneurysms (AAAs) represent a potentially life-threatening condition that 

predominantly affects the infrarenal aorta. Several preclinical murine models that mimic the 

human condition have been developed and are now widely used to investigate AAA pathogenesis. 

Cell- or pharmaceutical-based therapeutics designed to prevent AAA expansion are currently 

being evaluated with these animal models, but more minimally invasive strategies for delivery 

could improve their clinical translation. The purpose of this study was to investigate the use of 

self-assembling type I collagen oligomers as an injectable therapeutic delivery vehicle in mice. 

Here we show the success and reliability of a para-aortic, ultrasound-guided technique for 

injecting quickly-polymerizing collagen oligomer solutions into mice to form a collagen-fibril 

matrix at body temperature. A commonly used infrarenal mouse AAA model was used to 

determine the target location of these collagen injections. Ultrasound-guided, closed-abdominal 

injections supported consistent delivery of collagen to the area surrounding the infrarenal 

abdominal aorta halfway between the right renal artery and aortic trifurcation into the iliac and tail 

arteries. This minimally invasive approach yielded outcomes similar to open-abdominal injections 

into the same region. Histological analysis on tissue removed on day 14 post-operatively showed 
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minimal in vivo degradation of the self-assembled fibrillar collagen and the majority of implants 

experienced minimal inflammation and cell invasion, further confirming this material's potential as 

a method for delivering therapeutics. Finally, we showed that the typical length and position of this 

infrarenal AAA model was statistically similar to the length and targeted location of the injected 

collagen, increasing its feasibility as a localized therapeutic delivery vehicle. Future preclinical 

and clinical studies are needed to determine if specific therapeutics incorporated into the self-

assembling type I collagen matrix described here can be delivered near the aorta and locally limit 

AAA expansion.

Graphical abstract

Introduction

Abdominal aortic aneurysms (AAAs) are pathological dilations of the aorta that are 

associated with significant morbidity and mortality (1), accounting for more than 150,000 

deaths globally in 2013 (2). Several common murine AAA models have been developed that 

mimic many characteristics of the human condition. These include chemically-induced 

AAAs with either calcium chloride (CaCl2) (3) or porcine pancreatic elastase (4,5), or 

genetically-induced in hyperlipidemic mice (6,7) infused systemically with angiotensin II 

(8–11). Current therapeutic strategies have focused on reducing extracellular matrix 

degradation and chronic inflammation (12,13), both of which are known to be important 

pathological features of AAAs (14). While most previous preclinical AAA work has 

administered experimental cell-based and pharmaceutical therapeutics through 

intraperitoneal injections (15), intravenous injections (16), or the animals' drinking water 

(17), minimally invasive injection strategies have the potential to locally deliver therapies 

with a clear translational potential (18).

Type I collagen is the major structural and mechanical determinant of the extracellular 

matrix within connective tissues (19,20). Due to its proteolytic degradability, 

biocompatibility, and low antigenicity, collagen has recently garnered interest as a clinically 

relevant biomaterial for therapeutic cell and molecule delivery (21). However, commercial 

grade monomeric collagen sources have slow polymerization rates and produce gels or 

matrices with low mechanical integrity, thus limiting their use as an injectable therapeutic 

delivery vehicle in vivo (22). Recently, a new soluble type I collagen subdomain, termed 

oligomers, has been isolated from porcine dermis (23). Oligomers uniquely retain their 

natural intermolecular crosslinks, which induce suprafibrillar self-assembly to yield highly-

branched collagen-fibril networks with improved mechanical integrity (23). Specifically, 

oligomer matrices prepared at 0.5-4 mg mL-1 exhibit shear storage modulus (G′) values of 
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40-1500 Pa compared to 2-300 Pa and 2-50 Pa for telocollagen and atelocollagen 

respectively (22). Oligomers also polymerize within minutes to form D-banded collagen-

fibril materials with tunable properties, including fibril microstructure, matrix stiffness, and 

proteolytic degradation based on the polymerization parameters such as total collagen 

concentration and oligomer to monomer ratio (22,24,25). This previous work motivates 

further investigation of oligomers as an injectable self-assembling biomaterial for 

encapsulation and delivery of therapeutics in vivo.

Over the past 20 years, the field of image-guided interventions has greatly expanded by 

advances in medical imaging technology (26). With the real-time acquisition, portability, and 

low cost of ultrasound, it has emerged as an important imaging modality both in the clinic 

(27) and in preclinical animal research (28,29) for improved location, accuracy, precision, 

and overall success of image-guided injections. Without the aid of noninvasive imaging, 

delivery is typically limited to systemic injections that are commonly associated with off-

target side effects in other organ systems (30–32) or open surgical implantation that is 

impractical with repeated treatments. Therapies delivered locally can potentially reduce 

these complications and target the aortic adventitia. Ultrasound guidance supports 

visualization of the target site and allows for minimally invasive delivery of therapies in both 

humans (33–35) and rodents (9,36–38).

In this study we describe a technique for murine para-aortic injections of self-assembling 

type I collagen oligomers with high frequency ultrasound guidance. Analysis of the success 

and reliability of these ultrasound-guided closed-abdominal injections are presented and 

compared to open injections after abdominal laparotomy. Here, success is defined as 

consistent localized delivery of the collagen volume midway between the right renal artery 

and aortic trifurcation into the iliac and tail arteries. Additionally, we present results of a 

longitudinal study designed to quantify the persistence and displacement of the formed 

collagen-fibril matrix in vivo over 14 days using high frequency ultrasound. Finally, we 

compare the length and target location of the collagen injection to the average length and 

position of an infrarenal AAA in a topical elastase mouse model (39). Our results suggest 

that injections of self-assembling oligomers via ultrasound guidance can be used as a 

minimally invasive delivery strategy within the peritoneal cavity of mice, specifically for the 

use as an infrarenal AAA therapeutic delivery vehicle. Future studies using this ultrasound-

guided technique will be needed to determine if collagen encapsulated therapeutics can limit 

AAA expansion.

Materials and Methods

Topical Elastase AAA Disease Model

Animal Procedure—Wild-type male mice (n=9; 23.9 ± 1.4 g, 10.8 ±1.1 weeks old) from 

Harlan Laboratories (Indianapolis, IN) underwent laparotomies to induce infrarenal AAAs 

using a previously described topical elastase model (39). Briefly, we exposed the infrarenal 

aorta between the renal arteries and aortic trifurcation. Once exposed, a 4×2 mm piece of 

Gelfoam (Pharmacia & Upjohn Co., Pfizer Inc., New York, NY) was soaked in 50 μL type I 

porcine pancreatic elastase (3.6 mg/mL in water [with 0.01% thymol & trypsin at ≤50 BAEE 

units/mg protein], elastase activity measured to be between 27-34 units/mL, Sigma-Aldrich 
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Co., E1250, St. Louis, MO) was applied to the aorta for 10 minutes before being rinsed with 

2 mL sterile saline. The animal was sutured closed, given a dose of carprofen (RIMADYL®, 

dose 5mg/kg, concentration 0.5mg/mL, amount 0.1mL/10g, Zoetis Inc., Kalamazoo, MI), 

and recovered. The Purdue Animal Care and Use Committee approved all procedures.

Ultrasound image collection and analysis—Ultrasound images were collected for 

each mouse before surgery and again at 3,7, and 14 days post-surgery. We collected B-mode 

and M-mode images of the infrarenal aorta in both long- and short-axis as well as short-axis 

3D images. The images were analyzed using VevoLab software (FUJIFILM VisualSonics) to 

quantify length, diameter, and volume of the aneurysm over 14 days as well as vertical 

distance from the middle of the AAA to the iliac trifurcation. B-mode volumes were lofted 

together by manually drawing serial contours using parallel segmentation (0.57 mm or 

smaller step size). The first and last contours were used to determine aneurysm length. A 

linear distance measurement tool was used to determine the diameter and vertical distance.

Collagen Injections

Animal Use and Treatment—For this study, we used a total of 18 male C57BL/6 mice 

(32.0 ± 3.9 g, 18.8 ± 3.0 weeks old) from Harlan Laboratories (Indianapolis, IN) or bred at 

Purdue University (West Lafayette, IN). Six animals received ultrasound-guided closed-

abdominal injections followed by euthanasia, six animals received open-abdominal 

injections followed by euthanasia, and six animals received ultrasound-guided closed-

abdominal injections followed by 14 days of imaging surveillance with ultrasound. All 

animals were healthy prior to injection and body mass was monitored for the six recovered 

animals throughout the study. The Purdue Animal Care and Use Committee approved all 

procedures.

Type I Collagen Preparation—Type I collagen oligomers were derived from the dermis 

of domestic pigs and prepared as described previously (22). Prior to use, lyophilized 

collagen oligomers were dissolved in 0.01 N hydrochloric acid (HCl) and rendered aseptic 

by chloroform exposure at 4°C. A Sirius Red (Direct Red 80) assay was used to determine 

collagen concentration as previously described (40). The oligomer formulation was 

standardized based upon purity as well as polymerization potential according to the ASTM 

international consensus standard F3089-14 (41). Polymerization potential is defined by 

matrix shear storage modulus (G′) as a function of collagen concentration of the 

polymerization reaction (22). The collagen solution was diluted with 0.01 N HCl and 

neutralized with both 10× phosphate buffered saline (PBS) and 0.1 N sodium hydroxide 

(NaOH) to achieve a pH of 7.4.

Oligomer polymerization kinetics were measured using an AR2000 rheometer (TA 

Instruments, New Castle, DE) equipped with a stainless-steel 40 mm-diameter parallel plate 

geometry. Upon lowering the geometry, the Peltier plate was maintained at 4°C for 5 

minutes and then increased to 37°C for 15 minutes to induce collagen polymerization. Time-

dependent changes in shear storage modulus (G′) were measured at 1% controlled 

oscillatory strain. Polymerization half-time was calculated at the time at which G′ equals 

half the maximum G′ value (n=3). Cryo-SEM images displaying oligomer matrix 
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ultrastructure were obtained using an FEI NOVA nanoSEM 200 (FEI, Hillsboro, OR) 

varying between an Everhart-Thronley (<10,000× magnification) or immersion lens 

(>10,000× magnification) detector. Samples were quick frozen by submersion into critical 

point liquid nitrogen, transferred to a CT1000 col-stage attachment (Oxford Instruments 

North America, Inc., Concord, MA), and sublimated under vacuum for 15 minutes before 

sputter coating and imaging.

All oligomers were injected at a final collagen concentration of 2.1 mg/mL and volume of 

150 μL, which yielded a 500 Pa collagen-fibril matrix. To visualize collagen following 

injection, blue food dye (Clover Valley, Dollar General Corporation, Goodlettsville, TN) was 

added to the PBS solution. Collagen solutions were kept on ice prior to injection, allowing 

for polymerization to occur once the solution warmed to body temperature (∼37°C) post-

injection.

Ultrasound-Guided Closed-Abdominal Injections

Animal Preparation—Transabdominal para-aortic injections were performed with 

ultrasound guidance in a total of 12 mice. Prior to imaging, animals were anesthetized in a 1 

L induction chamber and kept unconscious with a coaxial nose cone non-rebreathing system 

that administered 1-3% isoflurane in 1.5 L/min medical grade air. Sterile eye lubricant was 

applied and animals were positioned on an adjustable heated stage set to 44°C to maintain 

internal body temperature near 37°C. Heart rate, respiration rate, and body temperature were 

monitored every 15 minutes with stage electrodes and a rectal probe, respectively. Hair on 

the ventral and dorsal sides was removed with clippers and depilatory cream (Nair, Church 

& Dwight Co., Inc. Ewing, NJ). Warm ultrasound transmission gel was applied liberally to 

the exposed skin prior to transducer placement.

Pre- and Post-Injection Imaging—For detection and monitoring of material injections, 

we used a high-resolution small animal ultrasound system (Vevo2100, FUJIFILM 

VisualSonics, Toronto, Canada) with a linear array transducer (MS550D, 256 elements, 40 

MHz center frequency). Prior to injection, the right renal artery and aortic trifurcation were 

visualized in short axis on all animals positioned supine. To obtain animal-specific 

measurements, we used the y-axis stage controller to measure the length from the right renal 

artery to aortic trifurcation in millimeters. This total infrarenal aortic length was used to 

calculate a midpoint of the infrarenal aorta for each animal, the target location of our 

injection strategy. For baseline pre-injection ultrasound scans, transaxial three-dimensional 

B-mode images were acquired with respiration and cardiac gating from all animals (0.19 

mm step size, 20 mm scan distance from the right renal artery to aortic trifurcation). 

Additionally, two-dimensional B-mode cine loops (100 frames) were acquired to the left and 

right of the infrarenal aorta in long axis. Similar three- and two-dimensional B-mode images 

were acquired on all animals post-injection and on the six recovered animals at days 1, 2, 3, 

7, and 14 post-injection. The angle of the animal stage was adjusted for optimal aortic 

visualization and M-mode, color Doppler, and pulsed-wave Doppler acquisitions were used 

to discriminate arteries from veins.
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Injection Procedure—Following baseline imaging, all animals were positioned prone and 

the stage was angled approximately 10° to the right. The transducer was clamped to an 

adjustable bench-mounted rail system, angled approximately 45° to the left, and positioned 

in a mediolateral orientation on all animals in short axis (Fig 1). The infrarenal aorta 

midpoint was visualized with B-mode and distinguished from the vena cava with M-mode 

and color Doppler. We adjusted the imaging depth between 10-11 mm to optimize aorta 

visualization.

An automated image-guided precision micro-injection system (FUJIFILM VisualSonics) 

was mounted to the left of the animal stage and used for all closed-abdominal injections. For 

accurate needle placement, an empty 1 mL syringe with a 27 G, ½ in. sterile needle was 

positioned in line with the transaxial plane of the transducer and angled approximately 45° 

downward parallel to the transducer (Fig 1). The injection mount controls were used to 

advance the needle directly under the transducer, requiring only minor adjustments of the 

transducer to enhance visualization of the needle tip in contact with the skin. Prior to 

breaking the skin surface, the trajectory of the needle was adjusted and visually aligned to 

ensure accurate placement with minimal injury. The needle was then inserted through the 

abdominal wall on the left side and positioned directly above the infrarenal aorta towards the 

animal's ventral side (Fig 2).

Following needle alignment, we loaded 150 μL of oligomer solution into a 1 mL syringe 

with a 27 G, ½ in. sterile needle that was pre-chilled in a -20°C freezer. The collagen filled 

syringe and needle were then clamped into the injection mount system with the bevel up, 

ensuring no adjustments were needed for alignment. We then inserted the needle tip directly 

above the infrarenal aorta and injected 150 μL of oligomeric collagen. A 440-500 frame B-

mode cine loop was acquired both during injection and needle withdrawal for all para-aortic 

injections with a single focal zone on the aorta (S1 and S2 Videos). No para-aortic injections 

were performed on the right side of animals to serve as an internal control.

Conventional Open-Abdominal Injections

Animal Preparation—Para-aortic injections were performed in six mice without 

ultrasound guidance during an open-abdominal surgery approach. Animals were 

anesthetized and kept unconscious with isoflurane and medical grade air as mentioned 

above. A 50 W heating pad warmed to approximately 40°C was used to maintain internal 

body temperature at 37°C. The rate of respiration was monitored visually and the depth of 

anesthesia was assessed with periodic toe pinches. Aseptic technique was not followed for 

this non-recovery procedure, but hair on the ventral side was removed with depilatory cream.

Injection Procedure—The infrarenal aorta was surgically exposed and oligomeric 

collagen was prepared as described above. To mimic the closed-abdominal injections, the 

needle was manually guided through the abdomen from the left and positioned directly on 

top of the infrarenal aorta with the bevel down. Collagen was injected at the midpoint of the 

infrarenal aorta and a stereomicroscope (M60 with DFC290HD camera, Leica 

Microsystems, Wetzlar, Germany) was used to capture images before, during, and 5 minutes 

after the 150 μL para-aortic injection (Fig 3).
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Animal Sacrifice and Dissection

We anesthetized all animals with isoflurane before euthanasia in a 1 L induction chamber 

with 0.2 L/min carbon dioxide following injection (n=12) or 14 days after recovery (n=6). 

The abdominal aorta from the suprarenal region down to the aortic trifurcation (including 

the kidneys, collagen injection, and all surrounding tissue) was carefully dissected and 

imaged with the same stereomicroscope. The abdominal tissue was fixed in 4% 

paraformaldehyde for 24 hours and then transferred to 0.1% paraformaldehyde for long-term 

storage. The spine was also removed from the fixed tissue prior to histological sectioning.

Histology Preparation and Staining

Fixed abdominal tissue at the target location (approximately 3 mm long and 20 mm wide) 

was dissected for sectioning. The tissues were oriented diagonally in single-chamber 

histology cassettes, held in place with foam biopsy pads, and stored in 0.1% 

paraformaldehyde until processing. The abdominal segments were then paraffin-embedded, 

thin-sectioned (5 μm), and adjacent sections were stained with hematoxylin and eosin 

(H&E) and Masson's trichrome (MTC) with an aniline blue staining kit (lot number 

1528839, Newcomer Supply, Middleton, WI). The MTC stain was used to differentiate 

collagen (blue) from surrounding structures. We imaged stained tissue sections at both 10× 

and 40× magnification with a compound microscope (DM750 with ICC50W camera, Leica 

Microsystems).

Ultrasound Analysis and Validation

Post-injection ultrasound data was analyzed for days 0, 3, 7, and 14 with VevoLab software 

to quantify collagen implant dimensions (i.e. length, width, height) and volume. Both the 

vertical distance from the center of the collagen to the center of the infrarenal aorta and the 

closest horizontal distance from the aorta to the collagen were also measured to define 

implant displacement over the two-week period. B-mode volumes of collagen were 

segmented as mentioned above. The first and last contours were used to determine implanted 

collagen length. A linear distance measurement tool was used to determine the width, 

height, and displacement distances.

To validate the volume measurements, polyethylene tubing (PE50, Braintree Scientific, 

Braintree, MA) filled with oligomeric collagen was imaged with transaxial three-

dimensional B-mode ultrasound (0.19 mm step size, 20 mm scan distance). The collagen 

volume was segmented manually by drawing serial contours and compared to the known 

volume calculated from the inner diameter and length of the tubing.

Dissection Image Analysis

Microscope images taken from dissection were analyzed with ImageJ software (42) to 

determine implanted collagen length, and horizontal and vertical collagen displacement 

distances from the infrarenal aorta. All images were accurately scaled prior to analysis and 

the straight line tool was used to measure distances.
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Statistical Analysis

Data are represented as mean ± standard deviation (SD) and Minitab statistical software 

(Minitab, version 17) was used for all analysis. One-way ANOVA tests with post hoc Tukey 

comparisons were run to assess statistical significance of parameters between two time 

points or treatment groups. For all tests, we considered a p-value less than 0.05 to be 

significant.

Results

Oligomer exhibits rapid supramolecular self-assembly, transitioning from a solution to a 
continuous D-banded collagen-fibril scaffold

The fibrillar and suprafibrillar self-assembly displayed by type I collagen oligomers has the 

potential to provide the necessary microstructure and mechanical support for controlled 

drug, nanoparticle, or cell delivery. Since oligomers start as a viscous solution, they show 

excellent flowability even through small gauge needles, making them ideally suited for 

minimally invasive procedures. Upon warming body temperature (37°C), oligomers rapidly 

self-assemble with a polymerization half-time of 0.62±0.03 minutes as measured using a 

rheometer-based method. Ultrastructure analysis using cryo-SEM reveals that oligomers 

form a highly interconnected fibrillar scaffold with D-spacing patterns similar to those found 

within connective tissues in vivo (Figure 4).

Elastase AAA Develop Midway Between the Renal Arteries and Aortic Trifurcation

Using the collected ultrasound images, we found the average length of the AAAs to be 8.3 

± 1.13 mm over 14 days (Fig 5(e)). We also found that the average diameter (day 0: 0.66 

±0.05 mm, day 7: 0.97 ± 0.04 mm, day 14: 1.13 ± 0.13 mm) and volume (day 0: 2.31 ±0.40 

mm3, day 7: 5.08 ± 0.79 mm3, day 14: 6.63 ± 1.37 mm3) of these infrarenal aneurysms 

increased significantly from day 0 to day 14 (p < 0.05; Fig 5(a, b)). The average vertical 

distance from the middle of the AAAs to the start of the iliac arteries was 6.73 ± 1.18 mm 

(Fig 5(d)), which served as our target location for the collagen injection studies.

Ultrasound-Guided Injections Can Reliably Deliver Type I Collagen

For the closed-abdominal injections with (n=6) and without recovery (n=6), the midpoint of 

the infrarenal aorta and needle were easily distinguished in all animals and 92% (11 out of 

12) of the injections could be visualized with ultrasound. We defined injection visualization 

as the formation of a growing hypoechoic region gradually separating the needle from the 

infrarenal aorta in synchrony with the injection of collagen. This formation caused the 

infrarenal aorta to shift, typically to the right and dorsally (S1 Video). Three-dimensional B-

mode scans enabled us to visualize and analyze the hypoechoic implanted collagen and 

infrarenal aorta in all animals post-injection (S3 Video). Following injection on day 0, the 

collagen had a quantified mean volume of 45.2 ± 14.0 mm3 that spanned a mean length of 

9.0 ± 2.2 mm. Mean collagen width and height values were 5.3 ± 1.5 mm and 3.9 ± 1.0 mm, 

respectively. The mean horizontal distance between the collagen and the infrarenal aorta was 

1.0 ± 0.8 mm, and the center of the collagen was, on average, 1.7 ± 0.9 mm distal to the 

center of the infrarenal aorta. To validate the volumetric ultrasound results, we measured the 
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polyethylene tubing (0.5842 mm inner diameter, 20 mm length) filled with oligomeric 

collagen to have an inner volume of 5.35 mm3, which compared well with the known inner 

volume of 5.36 mm3.

Ultrasound-Guided Closed-Abdominal Injections Are Similar to Open-Abdominal Injections

Measurements taken from dissection images showed no statistical differences between the 

collagen for the closed-abdominal and open-abdominal injections without recovery (Fig 

6(a)). The mean length of the collagen implant was similar for both groups (closed-

abdominal: 9.0 ± 0.7 mm and open-abdominal: 8.5 ± 3.0 mm, p = 0.70). We found that the 

collagen was slightly closer to the aorta in the open-abdominal group in the horizontal 

direction, but this did not reach statistical significance (closed-abdominal: 1.3 ± 1.3 mm and 

open-abdominal: 0.4 ± 0.6 mm, p = 0.14). Finally, the vertical displacement of the collagen's 

center towards the animal's tail from the infrarenal aorta's center was similar for both closed- 

and open-abdominal injections (closed-abdominal: 1.1 ± 0.3 mm and open-abdominal: 1.2 

± 0.9 mm, p = 0.74). Sample closed-abdominal and open-abdominal dissection images are 

shown in Figure 6(b, c).

Small Animal Ultrasound Enables Longitudinal Monitoring of Type I Collagen In Vivo

For the closed-abdominal injections with recovery, all six animals were fully ambulatory 

with no signs of complications. Average body mass went from 31 ± 4.1 g at day 0 pre-

injection to 29 ± 3.2 g two days after injection, but then increased to 31 ± 2.4 g 14 days after 

injection. Three-dimensional B-mode scans on subsequent study days facilitated temporal 

monitoring of collagen injections (Fig 7). One of the animals had a substantial amount of 

abdominal gas at each time point, which prevented us from analyzing the ultrasound images, 

reducing the total number to five. Over the course of 14 days, the collagen volume (day 0: 

49.5 ± 6.8 mm3 to day 14: 51.8 ± mm3, p = 0.58) did not change significantly (Fig 7(a)). 

The length (day 0: 7.9 ± 1.3 mm to day 14: 8.1 ± 0.9 mm, p = 0.75), width (day 0: 5.9 ± 1.3 

mm3 to day 14: 5.2 ± 0.5 mm3, p = 0.30), and height (day 0: 3.7 ± 0.9 mm3 to day 14: 4.5 

± 1.4 mm3, p = 0.30) of the collagen also showed no significant difference over the 14-day 

period (Fig 7(b)). The collagen's distance from the aorta in both horizontal and vertical 

directions was also tracked, which indicated collagen implant displacement insignificantly 

leftward (1.1 ± 0.9 mm to 2.4 ± 1.0 mm, p ≤ 0.06) and significantly distally (1.9 ± 0.6 mm to 

3.9 ± 0.3 mm, p ≤ 0.001) from the infrarenal aorta's center over 14 days (Fig 7(c)). 

Ultrasound measurements for recovery and non-recovery animals were compared to their 

respective dissection image measurements to further validate our method. Non-recovery 

group length (dissection: 9.0 ± 0.7 mm and ultrasound: 9.8 ± 2.5 mm, p =0.46), horizontal 

displacement (1.3 ± 1.3 mm and 0.9 ± 0.8 mm, p =0.57), and vertical displacement (1.1 

± 0.3 mm and 1.5 ± 1.1 mm, p =0.42), as well as recovery group length (7.5 ± 1.9 mm and 

± 0.9 mm, p = 0.49), horizontal displacement (1.5 ± 0.2 mm and 2.4 ± 1.0 mm, p = 0.06) 

were all found to be statistically similar for dissection image and ultrasound image analyses. 

The vertical displacement in the recovery group (1.9 ± 1.2 mm and 3.9 ± 0.3 mm, p ≤ 0.01) 

was found to be statistically different between the dissection and ultrasound measurements. 

(Fig 8(a,b)). Representative ultrasound and dissection images from the closed-abdominal 

injections on days 0 and 14 are shown in Figure 8(c-f).
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Histological cross-sections obtained on day 14 showed that the injected collagen was similar 

in appearance to the fibrillar collagen found in normal dense connective tissues (i.e., 

dermis). Leukocytes, mainly neutrophils, surrounded but did not invade the collagen 

implants at day 14 in the majority (5 out of 6) of recovery animals (Fig 9(a,b)). Only one 

recovery mouse had leukocytes infiltrating the injected collagen at day 14 (Fig 9(c,d)). 

Intralesional bacteria and focal collagen degradation were also observed to invade the 

collagen implant within this mouse.

Collagen Injection Location and Length Similar to AAA Model

We compared the location of the middle of the AAA to the middle of the collagen injections 

by measuring their respective distances above the iliac artery bifurcation (AAA: 6.73 ± 1.18 

mm; collagen injection: 7.28 ± 0.38 mm) and found no statistically significant difference (p 

= 0.15; Fig 4(d)). When compared to the collagen implant, the average length (AAA: 8.30 

± 1.18 mm; collagen injection: 8.11 ± 0.88 mm) was also not significantly different (p = 

0.77; Fig 4(e)).

Discussion

This work demonstrates utility of high frequency ultrasound for guidance and temporal 

monitoring of transabdominal para-aortic self-assembling type I collagen implants in mice. 

We showed that closed-abdominal injections with an ultrasound-guided technique delivered 

highly reproducible volumes of type I collagen oligomers to a target location near the 

infrarenal aorta. The outcomes of this minimally invasive approach, specifically reliable and 

reproducible volume delivery and localization, were similar to open-abdominal surgical 

injection strategy, showing our collagen could be placed similarly with ultrasound guidance 

without major surgery to administer a therapeutic.

Persistence of the injected collagen implant over a 14-day period was also documented with 

longitudinal ultrasound studies. The majority of recovery animals exhibited little to no cell 

invasion into the collagen implant, with one mouse showing more substantial leukocyte 

infiltration. Material persistence, together with the lack of significant cellular infiltration and 

minimized inflammatory response is especially noteworthy since conventional biologic-

based injectables, including suspensions of decellularized tissue particulate or insoluble 

fibrillar collagens, are often associated with significant inflammatory/foreign body reactions 

and/or rapid degradation. These tissues responses are often characterized by dense 

infiltration of neutrophils, macrophages, and, in some cases, giant cells. Remnant cellular 

components (i.e., DNA) and/or extent of processing (i.e., exogenous crosslinking) have been 

implicated as the cause of these inflammatory/foreign body reactions (43). In contrast, 

oligomer collagen represents a highly purified formulation with defined molecular 

composition. This purified collagen, which is highly conserved across species (44), appears 

to eliminate many of the components known to induce adverse tissue responses and rapid 

degradation. Material sterilization, rather than aseptic preparation, and refinement of sterile 

injection may further assist in reducing overall inflammation in future studies. Taken 

together, these results suggest that this ultrasound-guided technique is an effective approach 

for delivery near the infrarenal aorta. Given this, further investigation will be needed to 
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determine if self-assembling type I collagen oligomers can be used as an injectable 

therapeutic delivery vehicle.

The infrarenal AAAs analyzed for this study showed a significant increase in the diameter 

and volume of the aorta midway between the renal and iliac arteries. This helped us identify 

our target for the collagen injections as 6.7 mm above the iliac bifurcation. The results of the 

collagen portion of this study revealed that we were able deposit an implant with a 

minimally invasive approach near the midpoint of the infrarenal aorta (the same location as 

the formation of the elastase-induced aneurysms). Furthermore, the comparable average 

lengths of the AAAs and the collagen implants showed that the polymerized collagen would 

be of adequate length to locally affect the entire AAA, not just a small region. Thus, this 

collagen injection technique could easily be paired in future studies with an infrarenal AAA 

model to test the efficacy and applicability of unproven controlled release therapeutics.

The clinical utility of para-aortic delivery of therapeutics via a trans-abdominal or trans-

lumbar approach is significant, as others have noted (18). AAA is characterized by mural 

infiltration of cytotoxic T-cells, dendritic cells, and macrophages and current data suggests 

that it is the result of a dysregulated auto-immune response to a cryptic antigen(s). The 

resultant inflammatory cascade, with production of reactive oxygen species and proteases, 

leads to smooth muscle cell apoptosis and degradation of the extra-cellular matrix proteins. 

It is this latter process that leads to loss of the structural integrity of the aortic wall and 

pathological dilatation. A minimally invasive approach with ultrasound-guided placement of 

a needle through the lumbar muscles could deliver immunomodulatory cells, such as 

mesenchymal stromal cells or T regulatory cells, that can mitigate the inflammatory cell 

activity in its initiation (13). Intravenous delivery of cells results in significant pulmonary 

sequestration, as we have previously shown, whereas needle directed para-aortic delivery 

will concentrate cells near the aorta and may increase their potency (45).

When polymerized, type I collagen oligomers from porcine skin form an interconnected 

fibril network demonstrating mechanical integrity far exceeding that of conventional 

monomer collagen formulations (22). Previous work has shown that oligomeric collagen has 

tunable properties, including fibril microstructure, matrix stiffness, and proteolytic 

degradation, which are all known to influence cell fate (24,46). Kreger et al. showed that 

mesenchymal stem cells (MSCs) are able to sense and respond to the broad range of 

physical properties provided by collagen-fibril matrices and that these properties provide 

important guidance cues for fundamental MSC behavior in vitro, including lineage specific 

differentiation of MSCs in vitro (22). This suggests that the self-assembling collagen could 

be used as an effective in vivo delivery vehicle for MSCs while supporting modulation of 

fibril density and matrix stiffness. With their immunosuppressive activities, MSCs have been 

shown to improve the outcome of inflammation-based diseases such as aortic aneurysms by 

administration through tail-vein injections (13) and topical placement of MSC sheets (47), 

thus opening the door to investigate the translational potential of MSCs delivered with 

oligomeric collagen as a treatment strategy for AAAs. Future studies could also investigate 

oligomeric collagen as a localized delivery vessel for therapies such as microRNAs, 

monoclonal antibodies, and various small molecules for treating a variety of diseases 
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including cardiac remodeling (48), several cancers (49,50), diabetes (51), and Alzheimer's 

disease (52).

Despite the efficacy of our ultrasound-guided injections, some limitations in the present 

study remain. First, the presence of abdominal gas can disrupt ultrasound imaging. While 

some adjustment of the animal stage relative to the transducer can minimize this 

interference, this artifact sometimes remained unresolved and limited our ability to visualize 

the collagen implant. Optimal collagen visualization is crucial for accurate ultrasound 

analysis and a lack thereof could explain the difference between the polymerized collagen 

volume quantified (45.2 ± 14.0 mm3) and the total collagen solution volume injected (150 

mm3). Another possible explanation for this volume discrepancy is the loss of interstitial 

fluid and compression of the formed collagen-fibril network upon injection within the 

confined tissue space. To better distinguish implanted collagen from surrounding structures, 

encapsulated gas-filled microbubbles could be used as a contrast agent, an approach that has 

become common in clinical imaging (53). Furthermore, compression of mice with the 

ultrasound probe could cause deformation of the collagen implant in vivo. Because of this, 

we made a strong effort to reduce the amount of pressure the transducer exerted on each 

mouse to diminish deformation. Finally, visualization of the injection, important for 

ensuring accurate collagen delivery, can be hindered by attenuation from the spine. We were 

able to visualize 92% (11 out of 12) of the closed-abdominal injections at the target site, 

suggesting that the spine did not create a major issue. In the one animal where the injection 

was not visualized with ultrasound, collagen was also not detected at the target location, 

suggesting inaccurate delivery. Because these injections are minimally invasive, an injection 

in future studies can always be repeated to ensure proper administration.

Conclusions

We demonstrated the utility of ultrasound-guided methods for successful and reliable 

delivery of self-assembling type I collagen oligomers to the region surrounding the 

infrarenal aorta in mice, based on a commonly used infrarenal AAA model. Our injected 

collagen implants had similar lengths as an infrarenal AAA and were delivered within close 

proximity to the aorta. In a longitudinal study, polymerized oligomer matrices persisted with 

insignificant proteolytic degradation and minimal inflammation and cell invasion over a two-

week period. With advancements in tissue engineering and medical imaging, future studies 

could use this injection technique to develop and investigate novel therapeutics for AAAs 

and other diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Set-up for ultrasound-guided closed-abdominal injections
An anesthetized mouse is shown on the animal stage. The ultrasound transducer as well as 

the syringe and needle are shown placed above the animal ready for injection.
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Fig 2. Ultrasound visualization of needle alignment in relation to infrarenal aorta pre-injection
Two-dimensional B-mode image in short axis showing the ultrasound-guided insertion of a 

27 G needle (yellow arrows) through the abdomen and positioned directly above the 

infrarenal aorta (red arrow) towards the ventral side. The black shadow in the middle of the 

image represents signal attenuation from the spine. A single focal zone was set 7 mm deep at 

the injection target site.
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Fig 3. Open-abdominal injection of type I collagen during surgical procedure
Three stereomicroscope images show the surgical approach before (a), during (b), and 5 

minutes after (c) an open-abdominal injection of oligomeric collagen (blue arrow). A 27 G 

needle (yellow arrows) with the bevel down was inserted through the abdomen from the left 

and positioned directly on top of the infrarenal aorta (red arrow). Scale bars = 5 mm.
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Fig 4. Type I collagen oligomers form highly interconnected fibrillar matrices
High resolution cryo-SEM images showing the type I collagen oligomers forming highly 

interconnected fibrillar matrices with D-periodic spacing similar to that found in connective 

tissues in vivo. Scale bars are 30 μm (a) and 1 μm (b), respectively.
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Fig 5. Infrarenal AAA Model Guides Collagen Injection Target
Mean ± SD for US measurements of AAA diameter (a) and volume (b) over 14 days. 

Example infrarenal AAA volume expansion is depicted over the same two weeks (c). Mean 

± SD for comparisons between AAA and collagen implant length (d) as well as comparison 

between the distance above the iliac arteries for the middle of the AAA and the target of 

each collagen injection (e). Scale bars= 2 mm (c). * denotes statistical significance of AAA 

measurements between day 0 and 14 (p < 0.05).
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Fig 6. Comparison between closed-abdominal and open-abdominal injections
The mean ± SD (n=6) measurements for collagen, including implant length, and horizontal 

and vertical displacement from the aorta, were similar between closed-abdominal and open-

abdominal injections in the non-recovery groups (a). No statistical differences between 

groups were observed (p-value range: 0.14-0.74). Representative closed-abdominal (b) and 

open-abdominal (c) dissection images show this similarity. Blue arrows point to the 

collagen, and red arrows point towards the infrarenal aorta. Scale bars = 0.5 mm.
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Fig 7. Type I collagen does not degrade significantly over 14 days in vivo
Mean ± SD measurements on days 0, 3, 7, and 14 (n=5) for collagen volume (a) and length, 

width, and height (b), as well as horizontal and vertical displacement distances (c). * denotes 

statistical significance of collagen measurements between day 0 and 14 (p < 0.05).
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Fig 8. Type I collagen displacement over 14 days in vivo quantified through dissection and 
ultrasound image analysis
Mean ± SD measurements for dissection and ultrasound (US) image measurements of 

length, and horizontal and vertical displacements at end-point for non-recovery (a, n=6) and 

recovery (b, n=6) animals. Sample three-dimensional renderings for day 0 (c) and day 14 (d) 

showing the right renal artery (top arrow) and aortic trifurcation (bottom arrow) for 

reference points and leftward and distal shift of the collagen over two weeks in vivo. 

Example dissection images of collagen injection at day 0 (e) and day 14 (f) again 

emphasizing the collagen's shift leftward and distally (blue arrow) from the infrarenal aorta 

(red arrow). Scale bars = 2 mm (c,d) and 5 mm (e,f). * denotes statistical significance of 

collagen displacement measurements between day 0 and 14 (p < 0.05)
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Fig 9. Representative histology images show range of leukocyte infiltrate at 14 days post-
injection
MTC stained histology images depict representative cell infiltrate observed 14 days after 

collagen injection. The majority of collagen implants showed surrounding leukocytes with 

little to no cell invasion (a,b). One mouse showed leukocyte infiltration (blue arrow), 

bacteria aggregation (red arrow), and possible collagen degradation (black arrow) (c,d). Mild 

(a,b) and advanced (c,d) cell infiltrate are shown at 10× (a,c) and 40× times; (b,d) 

magnification. Scale bars = 0.1 mm (a,c) and 0.05 mm (b,d).
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