167 research outputs found

    Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an Osteogenesis Imperfecta/Ehlers-Danlos Syndrome overlap syndrome

    Get PDF
    Background: Whereas mutations affecting the helical domain of type I procollagen classically cause Osteogenesis Imperfecta (OI), helical mutations near the amino (N)-proteinase cleavage site have been suggested to result in a mixed OI/Ehlers-Danlos syndrome (EDS)-phenotype. Methods: We performed biochemical and molecular analysis of type I (pro-) collagen in a cohort of seven patients referred with a clinical diagnosis of EDS and showing only subtle signs of OI. Transmission electron microscopy of the dermis was available for one patient. Results: All of these patients harboured a COL1A1 / COL1A2 mutation residing within the most N-terminal part of the type I collagen helix. These mutations affect the rate of type I collagen N-propeptide cleavage and disturb normal collagen fibrillogenesis. Importantly, patients with this type of mutation do not show a typical OI phenotype but mainly present as EDS patients displaying severe joint hyperlaxity, soft and hyperextensible skin, abnormal wound healing, easy bruising, and sometimes signs of arterial fragility. In addition, they show subtle signs of OI including blue sclerae, relatively short stature and osteopenia or fractures. Conclusion: Recognition of this distinct phenotype is important for accurate genetic counselling, clinical management and surveillance, particularly in relation to the potential risk for vascular rupture associated with these mutations. Because these patients present clinical overlap with other EDS subtypes, biochemical collagen analysis is necessary to establish the correct diagnosis

    Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy

    Get PDF
    To continue evaluation of the long-term efficacy and safety of eteplirsen, a phosphorodiamidate morpholino oligomer designed to skip DMD exon 51 in patients with Duchenne muscular dystrophy (DMD). Three-year progression of eteplirsen-treated patients was compared to matched historical controls (HC). METHODS: Ambulatory DMD patients who were 657 years old and amenable to exon 51 skipping were randomized to eteplirsen (30/50mg/kg) or placebo for 24 weeks. Thereafter, all received eteplirsen on an open-label basis. The primary functional assessment in this study was the 6-Minute Walk Test (6MWT). Respiratory muscle function was assessed by pulmonary function testing (PFT). Longitudinal natural history data were used for comparative analysis of 6MWT performance at baseline and months 12, 24, and 36. Patients were matched to the eteplirsen group based on age, corticosteroid use, and genotype. RESULTS: At 36 months, eteplirsen-treated patients (n = 12) demonstrated a statistically significant advantage of 151m (p < 0.01) on 6MWT and experienced a lower incidence of loss of ambulation in comparison to matched HC (n = 13) amenable to exon 51 skipping. PFT results remained relatively stable in eteplirsen-treated patients. Eteplirsen was well tolerated. Analysis of HC confirmed the previously observed change in disease trajectory at age 7 years, and more severe progression was observed in patients with mutations amenable to exon skipping than in those not amenable. The subset of patients amenable to exon 51 skipping showed a more severe disease course than those amenable to any exon skipping. INTERPRETATION: Over 3 years of follow-up, eteplirsen-treated patients showed a slower rate of decline in ambulation assessed by 6MWT compared to untreated matched HC. Ann Neurol 2016;79:257-271

    Prognostic factors for changes in the timed 4-stair climb in patients with Duchenne muscular dystrophy, and implications for measuring drug efficacy: A multi-institutional collaboration

    Get PDF
    The timed 4-stair climb (4SC) assessment has been used to measure function in Duchenne muscular dystrophy (DMD) practice and research. We sought to identify prognostic factors for changes in 4SC, assess their consistency across data sources, and the extent to which prognostic scores could be useful in DMD clinical trial design and analysis. Data from patients with DMD in the placebo arm of a phase 3 trial (Tadalafil DMD trial) and two real-world sources (Universitaire Ziekenhuizen, Leuven, Belgium [Leuven] and Cincinnati Children\u27s Hospital Medical Center [CCHMC]) were analyzed. One-year changes in 4SC completion time and velocity (stairs/second) were analyzed. Prognostic models included age, height, weight, steroid use, and multiple timed function tests and were developed using multivariable regression, separately in each data source. Simulations were used to quantify impacts on trial sample size requirements. Data on 1-year changes in 4SC were available from the Tadalafil DMD trial (n = 92) Leuven (n = 67), and CCHMC (n = 212). Models incorporating multiple timed function tests, height, and weight significantly improved prognostic accuracy for 1-year change in 4SC (R2: 29%-36% for 4SC velocity, and 29%-34% for 4SC time) compared to models including only age, baseline 4SC and steroid duration (R2:8%-17% for 4SC velocity and 2%-13% for 4SC time). Measures of walking and rising ability contributed important prognostic information for changes in 4SC. In a randomized trial with equal allocation to treatment and placebo, adjustment for such a prognostic score would enable detection (at 80% power) of a treatment effect of 0.25 stairs/second with 100-120 patients, compared to 170-190 patients without prognostic score adjustment. Combining measures of ambulatory function doubled prognostic accuracy for 1-year changes in 4SC completion time and velocity. Randomized clinical trials incorporating a validated prognostic score could reduce sample size requirements by approximately 40%. Knowledge of important prognostic factors can also inform adjusted comparisons to external controls

    A Randomized Placebo-Controlled Phase 3 Trial of an Antisense Oligonucleotide, Drisapersen, in Duchenne Muscular Dystrophy

    Get PDF
    This 48-week, randomized, placebo-controlled phase 3 study (DMD114044; NCT01254019) evaluated efficacy and safety of subcutaneous drisapersen 6 mg/kg/week in 186 ambulant boys aged ≥5 years, with Duchenne muscular dystrophy (DMD) resulting from an exon 51 skipping amenable mutation. Drisapersen was generally well tolerated, with injection-site reactions and renal events as most commonly reported adverse events. A nonsignificant treatment difference (P = 0.415) in the change from baseline in six-minute walk distance (6MWD; primary efficacy endpoint) of 10.3 meters in favor of drisapersen was observed at week 48. Key secondary efficacy endpoints (North Star Ambulatory Assessment, 4-stair climb ascent velocity, and 10-meter walk/run velocity) gave consistent findings. Lack of statistical significance was thought to be largely due to greater data variability and subgroup heterogeneity. The increased standard deviation alone, due to less stringent inclusion/exclusion criteria, reduced the statistical power from pre-specified 90% to actual 53%. Therefore, a post-hoc analysis was performed in 80 subjects with a baseline 6MWD 300-400 meters and ability to rise from floor. A statistically significant improvement in 6MWD of 35.4 meters (P = 0.039) in favor of drisapersen was observed in this subpopulation. Results suggest that drisapersen could have benefit in a less impaired population of DMD subjects

    DMD Genotypes and Motor Function in Duchenne Muscular Dystrophy: A Multi-institution Meta-analysis With Implications for Clinical Trials

    Get PDF
    BACKGROUND AND OBJECTIVES: Clinical trials of genotype-targeted treatments in Duchenne muscular dystrophy (DMD) traditionally compare treated patients to untreated patients with the same DMD genotype class. This avoids confounding of drug efficacy by genotype effects but also shrinks the pool of eligible controls, increasing challenges for trial enrollment in this already rare disease. To evaluate the suitability of genotypically unmatched controls in DMD, we quantified effects of genotype class on 1-year changes in motor function endpoints used in clinical trials. METHODS: Over 1,600 patient-years of follow-up (>700 patients) were studied from six real-world/natural history data sources (UZ Leuven, PRO-DMD-01 shared by CureDuchenne, iMDEX, North Star UK, Cincinnati Children's Hospital Medical Center, and the DMD Italian Group), with genotypes classified as amenable to skipping exons 44, 45, 51 or 53, other skippable, nonsense, and other mutations. Associations between genotype class and 1-year changes in North Star Ambulatory Assessment total score (ΔNSAA) and in 10-meter walk/run velocity (Δ10MWR) were studied in each data source with and without adjustment for baseline prognostic factors. RESULTS: The studied genotype classes accounted for approximately 2% of variation in ΔNSAA outcomes after 12 months, whereas other prognostic factors explained >30% of variation in large data sources. Based on a meta-analysis across all data sources, pooled effect estimates for the studied skip-amenable mutation classes were all small in magnitude (<2 units in ΔNSAA total score in 1-year follow up), smaller than clinically important differences in NSAA, and were precisely estimated with standard errors <1 unit after adjusting for non-genotypic prognostic factors. DISCUSSION: These findings suggest viability of trial designs incorporating genotypically mixed or unmatched controls for up to 12 months in duration for motor function outcomes, which would ease recruitment challenges and reduce numbers of patients assigned to placebos. Such trial designs, including multi-genotype platform trials and hybrid designs, should ensure baseline balance between treatment and control groups for the most important prognostic factors, while accounting for small remaining genotype effects quantified in the present study

    Real-world and natural history data for drug evaluation in Duchenne muscular dystrophy: suitability of the North Star Ambulatory Assessment for comparisons with external controls

    Get PDF
    Using external controls based on real-world or natural history data (RWD/NHD) for drug evaluations in Duchenne muscular dystrophy (DMD) is appealing given the challenges of enrolling placebo-controlled trials, especially for multi-year trials. Comparisons to external controls, however, face risks of bias due to differences in outcomes between trial and RWD/NHD settings. To assess this bias empirically, we conducted a multi-institution study comparing mean 48-week changes in North Star Ambulatory Assessment (NSAA) total score between trial placebo arms and RWD/NHD sources, with and without adjustment for baseline prognostic factors. Analyses used data from three placebo arms (235 48-week intervals, N = 235 patients) and three RWD/NHD sources (348 intervals, N = 202 patients). Differences in mean ΔNSAA between placebo arms and RWD/NHD sources were small before adjustment (-1.2 units, 95% CI: [-2.0 -0.5]) and were attenuated and no longer statistically significant after adjustment (0.1 units (95% CI: [-0.6, 0.8]). Results were similar whether adjusting using multivariable regression or propensity score matching. This consistency in ΔNSAA between trial placebo arms and RWD/NHD sources accords with prior findings for the six-minute walk distance, provides a well-validated framework for baseline adjustment of prognostic factors, and supports the suitability of RWD/NHD external controls for drug evaluations in ambulatory DMD

    Stakeholder cooperation to overcome challenges in orphan medicine development: The example of Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy is a rare, progressive, muscle-wasting disease leading to severe disability and premature death. Treatment is currently symptomatic, but several experimental therapies are in development. Implemented care standards, validated outcome measures correlating with clinical benefit, and comprehensive information about the natural history of the disease are essential for regulatory approval of any treatment. However, for Duchenne muscular dystrophy and other rare diseases, these requirements are not always in place when potential therapies enter the clinical trial phase. A cooperative effort of stakeholders in Duchenne muscular dystrophy-including representatives from patients' groups, academia, industry, and regulatory agencies-is aimed at addressing this shortfall by identifying strategies to overcome challenges, developing the tools needed, and collecting relevant data. An open and constructive dialogue among European stakeholders has positively affected development of treatments for Duchenne muscular dystrophy; this approach could serve as a paradigm for development of treatments for rare diseases in general

    Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA)

    Get PDF
    Risdiplam is an oral, survival of motor neuron 2 (SMN2) pre-mRNA splicing modifier approved for the treatment of spinal muscular atrophy (SMA). SUNFISH (NCT02908685) Part 2, a Phase 3, randomized, double-blind, placebo-controlled study, investigated the efficacy and safety of risdiplam in type 2 and non‑ambulant type 3 SMA. The primary endpoint was met: a significantly greater change from baseline in 32-item Motor Function Measure (MFM32) total score was observed with risdiplam compared with placebo at month 12. After 12 months, all participants received risdiplam while preserving initial treatment blinding. We report 24-month efficacy and safety results in this population. Month 24 exploratory endpoints included change from baseline in MFM32 and safety. MFM‑derived results were compared with an external comparator. At month 24 of risdiplam treatment, 32% of patients demonstrated improvement (a change of ≥ 3) from baseline in MFM32 total score; 58% showed stabilization (a change of ≥ 0). Compared with an external comparator, a treatment difference of 3.12 (95% confidence interval [CI] 1.67-4.57) in favor of risdiplam was observed in MFM-derived scores. Overall, gains in motor function at month 12 were maintained or improved upon at month 24. In patients initially receiving placebo, MFM32 remained stable compared with baseline (0.31 [95% CI - 0.65 to 1.28]) after 12 months of risdiplam; 16% of patients improved their score and 59% exhibited stabilization. The safety profile after 24 months was consistent with that observed after 12 months. Risdiplam over 24 months resulted in further improvement or stabilization in motor function, confirming the benefit of longer-term treatment

    Meaningful changes in motor function in Duchenne muscular dystrophy (DMD): A multi-center study

    Get PDF
    Evaluations of treatment efficacy in Duchenne muscular dystrophy (DMD), a rare genetic disease that results in progressive muscle wasting, require an understanding of the ‘meaningfulness’ of changes in functional measures. We estimated the minimal detectable change (MDC) for selected motor function measures in ambulatory DMD, i.e., the minimal degree of measured change needed to be confident that true underlying change has occurred rather than transient variation or measurement error. MDC estimates were compared across multiple data sources, representing >1000 DMD patients in clinical trials and real-world clinical practice settings. Included patients were ambulatory, aged ≥4 to 80% confidence in true change were 2.8 units for the North Star Ambulatory Assessment (NSAA) total score, 1.3 seconds for the 4-stair climb (4SC) completion time, 0.36 stairs/second for 4SC velocity and 36.3 meters for the 6-minute walk distance (6MWD). MDC estimates were similar across clinical trial and real-world data sources, and tended to be slightly larger than MCIDs for these measures. The identified thresholds can be used to inform endpoint definitions, or as benchmarks for monitoring individual changes in motor function in ambulatory DMD
    • …
    corecore