7 research outputs found

    Discerning geological and geographical sources of Belgian Upper Paleolithic fluorites by rare earth elements and Sr-isotopic geochemistry

    No full text
    Fragments of fluorite (CaF2) have been found at five Belgian Upper Paleolithic sites (Spy, Chaleux, Trou Magritte, Trou du Frontal and Verlaine caves), primarily of Magdalenian age. These sites are located in a large geographical area. The aim of this study is to isolate one or more primary sources where the mineral could have been quarried prehistorically, and hence try to deduce if time and effort were put into obtaining it, or if it was simply a useful nearby raw material. In order to achieve this objective, isotopic 87Sr/86Sr and REE ratios are used. A total of four archaeological samples from the Chaleux, Spy and Trou Magritte sites along with geological samples were analyzed (new results and data from the literature), obtained from two distinct stratigraphical units in Belgium: the Givetian limestones (mainly from the Calestian Band), and the Dinantian limestones. Results show a single geological and geographical origin for the archaeological material: the silicified Givetian limestones of the Calestian Band near Givet (France). When looking at the 440 g of fluorite recovered at Chaleux cave, Chaleux could perhaps have had a central role in the distribution of fluorite in the region. Chaleux and Givet are both situated on the banks of the Meuse river, relatively proximal to one another, while the Spy cave is more distant from Givet and do not share the same river trajectory.We propose as possible that fluorite was quarried at Givet and taken to Chaleux via the Meuse river to be further distributed from there. The second scenario assumes that fluorite is transported directly from Givet to all the other studied sites.status: publishe

    The majority of the genetic risk for Paget’s disease of bone is explained by genetic variants close to the CSF1, OPTN, TM7SF4, and TNFRSF11A genes

    Get PDF
    Paget’s disease of bone (PDB) is one of the most frequent metabolic bone disorders (1–5%), next to osteoporosis, affecting individuals above age 55. Sequestosome1 mutations explain a part of the PDB patients, but still the disease pathogenesis in the remaining PDB patients is largely unknown. Therefore, association studies investigating the relationship between genetic polymorphisms and sporadic PDB have been performed to find the genetic risk variants. Previously such studies indicated a role of the OPG and RANK gene. The latter was recently confirmed in a genome-wide association study (GWAS) which also indicated the involvement of chromosomal regions harbouring the CSF1 and OPTN gene. In this study, we sought to replicate these findings in a Belgian and a Dutch population. Similar significant results were obtained for the single nucleotide polymorphisms and the haplotypes. The most significant results are found in the CSF1 gene region, followed by the OPTN and TNFRSF11A gene region (p values ranging from 1.3 × 10−4 to 3.8 × 10−8, OR = 1.523–1.858). We next obtained significant association with a polymorphism from the chromosomal region around the TM7SF4 gene (p = 2.7 × 10−3, OR = 1.427), encoding DC-STAMP which did not reach genome-wide significance in the GWAS, but based on its function in osteoclasts it can be considered a strong candidate gene. After meta-analysis with the GWAS data, p values ranged between 2.6 × 10−4 and 8.8 × 10−32. The calculated cumulative population attributable risk of these four loci turned out to be about 67% in our two populations, indicating that most of the genetic risk for PDB is coming from genetic variants close to these four genes

    The majority of the genetic risk for Paget's disease of bone is explained by genetic variants close to the CSF1, OPTN, TM7SF4, and TNFRSF11A genes.

    No full text
    Paget's disease of bone (PDB) is one of the most frequent metabolic bone disorders (1-5%), next to osteoporosis, affecting individuals above age 55. Sequestosome1 mutations explain a part of the PDB patients, but still the disease pathogenesis in the remaining PDB patients is largely unknown. Therefore, association studies investigating the relationship between genetic polymorphisms and sporadic PDB have been performed to find the genetic risk variants. Previously such studies indicated a role of the OPG and RANK gene. The latter was recently confirmed in a genome-wide association study (GWAS) which also indicated the involvement of chromosomal regions harbouring the CSF1 and OPTN gene. In this study, we sought to replicate these findings in a Belgian and a Dutch population. Similar significant results were obtained for the single nucleotide polymorphisms and the haplotypes. The most significant results are found in the CSF1 gene region, followed by the OPTN and TNFRSF11A gene region (p values ranging from 1.3 × 10(-4) to 3.8 × 10(-8), OR = 1.523-1.858). We next obtained significant association with a polymorphism from the chromosomal region around the TM7SF4 gene (p = 2.7 × 10(-3), OR = 1.427), encoding DC-STAMP which did not reach genome-wide significance in the GWAS, but based on its function in osteoclasts it can be considered a strong candidate gene. After meta-analysis with the GWAS data, p values ranged between 2.6 × 10(-4) and 8.8 × 10(-32). The calculated cumulative population attributable risk of these four loci turned out to be about 67% in our two populations, indicating that most of the genetic risk for PDB is coming from genetic variants close to these four genes

    Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget's disease of bone

    No full text
    RANK (receptor activator of nuclear factor-κB), encoded by TNFRSF11A, is a key protein in osteoclastogenesis. TNFRSF11A mutations cause Paget's disease of bone (PDB)-like diseases (ie, familial expansile osteolysis, expansile skeletal hyperphosphatasia, and early-onset PDB) and an osteoclast-poor form of osteopetrosis. However, no TNFRSF11A mutations have been found in classic PDB, neither in familial nor in isolated cases. To investigate the possible relationship between TNFRSF11A polymorphisms and sporadic PDB, we conducted an association study including 32 single-nucleotide polymorphisms (SNPs) in 196 Belgian sporadic PDB patients and 212 control individuals. Thirteen SNPs and 3 multimarker tests (MMTs) turned out to have a p value of between.036 and 3.17a×a10-4, with the major effect coming from females. Moreover, 6 SNPs and 1 MMT withstood the Bonferroni correction (p<.002). Replication studies were performed for 2 nonsynonymous SNPs (rs35211496 and rs1805034) in a Dutch and a British cohort. Interestingly, both SNPs resulted in p values ranging from.013 to 8.38a×a10-5 in both populations. Meta-analysis over three populations resulted in p=.002 for rs35211496 and p=1.27a×a10-8 for rs1805034, again mainly coming from the female subgroups. In an attempt to identify the underlying causative SNP, we performed functional studies for the coding SNPs as well as resequencing efforts of a 31-kb region harboring a risk haplotype within the Belgian females. However, neither approach resulted in significant evidence for the causality of any of the tested genetic variants. Therefore, further studies are needed to identify the real cause of the increased risk to develop PDB shown to be present within TNFRSF11A. © 2010 American Society for Bone and Mineral Research

    Polymorphisms at phase I-metabolizing enzyme and hormone receptor loci influence the response to anti-TNF therapy in rheumatoid arthritis patients

    No full text
    © Springer Nature Limited 2018The aim of this case-control study was to evaluate whether 47 single-nucleotide polymorphisms (SNPs) in steroid hormone-related genes are associated with the risk of RA and anti-TNF drug response. We conducted a case-control study in 3 European populations including 2936 RA patients and 2197 healthy controls. Of those, a total of 1985 RA patients were treated with anti-TNF blockers. The association of potentially interesting markers in the discovery population was validated through meta-analysis with data from DREAM and DANBIO registries. Although none of the selected variants had a relevant role in modulating RA risk, the meta-analysis of the linear regression data with those from the DREAM and DANBIO registries showed a significant correlation of the CYP3A4rs11773597 and CYP2C9rs1799853 variants with changes in DAS28 after the administration of anti-TNF drugs (P = 0.00074 and P = 0.006, respectively). An overall haplotype analysis also showed that the ESR2GGG haplotype significantly associated with a reduced chance of having poor response to anti-TNF drugs (P = 0.0009). Finally, a ROC curve analysis confirmed that a model built with eight steroid hormone-related variants significantly improved the ability to predict drug response compared with the reference model including demographic and clinical variables (AUC = 0.633 vs. AUC = 0.556; PLR_test = 1.52 × 10-6). These data together with those reporting that the CYP3A4 and ESR2 SNPs correlate with the expression of TRIM4 and ESR2 mRNAs in PBMCs (ranging from P = 1.98 × 10-6 to P = 2.0 × 10-35), and that the CYP2C9rs1799853 SNP modulates the efficiency of multiple drugs, suggest that steroid hormone-related genes may have a role in determining the response to anti-TNF drugs.KEY POINTS• Polymorphisms within the CYP3A4 and CYP2C9 loci correlate with changes in DAS28 after treatment with anti-TNF drugs.• A haplotype including eQTL SNPs within the ESR2 gene associates with better response to anti-TNF drugs.• A genetic model built with eight steroid hormone-related variants significantly improved the ability to predict drug response.This work was supported by grants from FIBAO foundation (Granada, Spain), Novo Nordisk Fonden (NNF15OC0016932), Knud og Edith Eriksens Mindefond and Gigtforeningen (A2037, A3570).info:eu-repo/semantics/publishedVersio

    Odanacatib for the treatment of postmenopausal osteoporosis : Results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study

    No full text
    Background Odanacatib, a cathepsin K inhibitor, reduces bone resorption while maintaining bone formation. Previous work has shown that odanacatib increases bone mineral density in postmenopausal women with low bone mass. We aimed to investigate the efficacy and safety of odanacatib to reduce fracture risk in postmenopausal women with osteoporosis. Methods The Long-term Odanacatib Fracture Trial (LOFT) was a multicentre, randomised, double-blind, placebo-controlled, event-driven study at 388 outpatient clinics in 40 countries. Eligible participants were women aged at least 65 years who were postmenopausal for 5 years or more, with a femoral neck or total hip bone mineral density T-score between −2·5 and −4·0 if no previous radiographic vertebral fracture, or between −1·5 and −4·0 with a previous vertebral fracture. Women with a previous hip fracture, more than one vertebral fracture, or a T-score of less than −4·0 at the total hip or femoral neck were not eligible unless they were unable or unwilling to use approved osteoporosis treatment. Participants were randomly assigned (1:1) to either oral odanacatib (50 mg once per week) or matching placebo. Randomisation was done using an interactive voice recognition system after stratification for previous radiographic vertebral fracture, and treatment was masked to study participants, investigators and their staff, and sponsor personnel. If the study completed before 5 years of double-blind treatment, consenting participants could enrol in a double-blind extension study (LOFT Extension), continuing their original treatment assignment for up to 5 years from randomisation. Primary endpoints were incidence of vertebral fractures as assessed using radiographs collected at baseline, 6 and 12 months, yearly, and at final study visit in participants for whom evaluable radiograph images were available at baseline and at least one other timepoint, and hip and non-vertebral fractures adjudicated as being a result of osteoporosis as assessed by clinical history and radiograph. Safety was assessed in participants who received at least one dose of study drug. The adjudicated cardiovascular safety endpoints were a composite of cardiovascular death, myocardial infarction, or stroke, and new-onset atrial fibrillation or flutter. Individual cardiovascular endpoints and death were also assessed. LOFT and LOFT Extension are registered with ClinicalTrials.gov (number NCT00529373) and the European Clinical Trials Database (EudraCT number 2007-002693-66). Findings Between Sept 14, 2007, and Nov 17, 2009, we randomly assigned 16 071 evaluable patients to treatment: 8043 to odanacatib and 8028 to placebo. After a median follow-up of 36·5 months (IQR 34·43–40·15) 4297 women assigned to odanacatib and 3960 assigned to placebo enrolled in LOFT Extension (total median follow-up 47·6 months, IQR 35·45–60·06). In LOFT, cumulative incidence of primary outcomes for odanacatib versus placebo were: radiographic vertebral fractures 3·7% (251/6770) versus 7·8% (542/6910), hazard ratio (HR) 0·46, 95% CI 0·40–0·53; hip fractures 0·8% (65/8043) versus 1·6% (125/8028), 0·53, 0·39–0·71; non-vertebral fractures 5·1% (412/8043) versus 6·7% (541/8028), 0·77, 0·68–0·87; all p<0·0001. Combined results from LOFT plus LOFT Extension for cumulative incidence of primary outcomes for odanacatib versus placebo were: radiographic vertebral fractures 4·9% (341/6909) versus 9·6% (675/7011), HR 0·48, 95% CI 0·42–0·55; hip fractures 1·1% (86/8043) versus 2·0% (162/8028), 0·52, 0·40–0·67; non-vertebral fractures 6·4% (512/8043) versus 8·4% (675/8028), 0·74, 0·66–0·83; all p<0·0001. In LOFT, the composite cardiovascular endpoint of cardiovascular death, myocardial infarction, or stroke occurred in 273 (3·4%) of 8043 patients in the odanacatib group versus 245 (3·1%) of 8028 in the placebo group (HR 1·12, 95% CI 0·95–1·34; p=0·18). New-onset atrial fibrillation or flutter occurred in 112 (1·4%) of 8043 patients in the odanacatib group versus 96 (1·2%) of 8028 in the placebo group (HR 1·18, 0·90–1·55; p=0·24). Odanacatib was associated with an increased risk of stroke (1·7% [136/8043] vs 1·3% [104/8028], HR 1·32, 1·02–1·70; p=0·034), but not myocardial infarction (0·7% [60/8043] vs 0·9% [74/8028], HR 0·82, 0·58–1·15; p=0·26). The HR for all-cause mortality was 1·13 (5·0% [401/8043] vs 4·4% [356/8028], 0·98–1·30; p=0·10). When data from LOFT Extension were included, the composite of cardiovascular death, myocardial infarction, or stroke occurred in significantly more patients in the odanacatib group than in the placebo group (401 [5·0%] of 8043 vs 343 [4·3%] of 8028, HR 1·17, 1·02–1·36; p=0·029, as did stroke (2·3% [187/8043] vs 1·7% [137/8028], HR 1·37, 1·10–1·71; p=0·0051). Interpretation Odanacatib reduced the risk of fracture, but was associated with an increased risk of cardiovascular events, specifically stroke, in postmenopausal women with osteoporosis. Based on the overall balance between benefit and risk, the study's sponsor decided that they would no longer pursue development of odanacatib for treatment of osteoporosis
    corecore