37 research outputs found

    The Transport History of Alluvial Fan Sediment Inferred From Multiple Geochronometers

    Get PDF
    We present a multi-chronometer approach to refine the age of an alluvial fan and to infer sediment transport and deposition history in the Anza Borrego Desert region of Southern California. We measure in situ produced cosmogenic carbon-14 (14C) from boulders on the fan surface and infrared stimulated luminescence (IRSL) ages from single feldspar grains within the alluvium. Our new IRSL age [5.3 ± 0.5 ka (±1σ)] is in excellent agreement with existing uranium-series [U-series; 5.3 ± 0.2 (±2σ)] ages of pedogenic carbonates. The IRSL and U-series ages show that in situ 14C measurements [6.6 ± 1.1 ka (±1σ)] from boulders contain inherited nuclides from prior exposure in the upstream catchment, much like measurements of the longer-lived nuclide, beryllium-10 (10Be). However, in situ 14C ages are closer to the preferred ages inferred from IRSL and U-series and with less scatter than comparative 10Be ages. Our data demonstrate that a multi-geochronometer approach will produce ages of alluvial fan surfaces with the greatest degree of confidence. We then apply the paired 14C and 10Be concentrations to infer the prior exposure and storage duration of the sampled boulders of 3.1 ± 3.2 and 4.6 ± 2.3 Kyr, respectively. A mixture model analysis of the single grain IRSL ages suggests bimodal storage durations prior to remobilization with peaks at ca. 2 and 10 Kyr. We demonstrate that cosmogenic nuclide inheritance and single grain IRSL equivalent dose distributions can provide additional information regarding sediment transport history prior to deposition on the alluvial fan

    PAR proteins diffuse freely across the anterior–posterior boundary in polarized C. elegans embryos

    Get PDF
    FRAP reveals that a stable PAR boundary requires balancing diffusive flux of PAR proteins between domains with spatial differences in PAR protein membrane affinities

    Anterior-enriched filopodia create the appearance of asymmetric membrane microdomains in polarizing C. elegans zygotes

    Get PDF
    International audienceThe association of molecules within membrane microdomains is critical for the intracellular organization of cells. During polarization of the C. elegans zygote, both polarity proteins and actomyosin regulators associate within dynamic membrane-associated foci. Recently, a novel class of asymmetric membrane-associated structures was described that appeared to be enriched in phosphatidylinositol 4,5-bisphosphate (PIP 2), suggesting that PIP 2 domains could constitute signaling hubs to promote cell polarization and actin nucleation. Here, we probe the nature of these domains using a variety of membrane-and actin cortex-associated probes. These data demonstrate that these domains are filopodia, which are stimulated transiently during polarity establishment and accumulate in the zygote anterior. The resulting membrane protrusions create local membrane topology that quantitatively accounts for observed local increases in the fluorescence signal of membrane-associated molecules, suggesting molecules are not selectively enriched in these domains relative to bulk membrane and that the PIP 2 pool as revealed by PH PLCδ1 simply reflects plasma membrane localization. Given the ubiquity of 3D membrane structures in cells, including filopodia, microvilli and membrane folds, similar caveats are likely to apply to analysis of membrane-associated molecules in a broad range of systems

    Polarization of PAR Proteins by Advective Triggering of a Pattern-Forming System

    Get PDF
    In the Caenorhabditis elegans zygote, a conserved network of partitioning-defective (PAR) polarity proteins segregates into an anterior and a posterior domain, facilitated by flows of the cortical actomyosin meshwork. The physical mechanisms by which stable asymmetric PAR distributions arise from transient cortical flows remain unclear. We present evidence that PAR polarity arises from coupling of advective transport by the flowing cell cortex to a multistable PAR reaction-diffusion system. By inducing transient PAR segregation, advection serves as a mechanical trigger for the formation of a PAR pattern within an otherwise stably unpolarized system. We suggest that passive advective transport in an active and flowing material may be a general mechanism for mechanochemical pattern formation in developmental systems

    Membrane Invaginations Reveal Cortical Sites that Pull on Mitotic Spindles in One-Cell C. elegans Embryos

    Get PDF
    Asymmetric positioning of the mitotic spindle in C. elegans embryos is mediated by force-generating complexes that are anchored at the plasma membrane and that pull on microtubules growing out from the spindle poles. Although asymmetric distribution of the force generators is thought to underlie asymmetric positioning of the spindle, the number and location of the force generators has not been well defined. In particular, it has not been possible to visualize individual force generating events at the cortex. We discovered that perturbation of the acto-myosin cortex leads to the formation of long membrane invaginations that are pulled from the plasma membrane toward the spindle poles. Several lines of evidence show that the invaginations, which also occur in unperturbed embryos though at lower frequency, are pulled by the same force generators responsible for spindle positioning. Thus, the invaginations serve as a tool to localize the sites of force generation at the cortex and allow us to estimate a lower limit on the number of cortical force generators within the cell

    CIL:37933, Caenorhabditis elegans, early embryonic cell. In Cell Image Library

    No full text

    CIL:37932, Caenorhabditis elegans, early embryonic cell. In Cell Image Library

    No full text

    CIL:37933, Caenorhabditis elegans, early embryonic cell. In Cell Image Library

    No full text

    Switching states: dynamic remodelling of polarity complexes as a toolkit for cell polarization

    No full text
    International audiencePolarity is defined by the segregation of cellular components along a defined axis. To polarize robustly, cells must be able to break symmetry and subsequently amplify these nascent asymmetries. Finally, asymmetric localization of signaling molecules must be translated into functional regulation of downstream effector pathways. Central to these behaviors are a diverse set of cell polarity networks. Within these networks, molecules exhibit varied behaviors, dynamically switching among different complexes and states, active versus inactive, bound versus unbound, immobile versus diffusive. This ability to switch dynamically between states is intimately connected to the ability of molecules to generate asymmetric patterns within cells. Focusing primarily on polarity pathways governed by the conserved PAR proteins, we discuss strategies enabled by these dynamic behaviors that are used by cells to polarize. We highlight not only how switching between states is linked to the ability of polarity proteins to localize asymmetrically, but also how cells take advantage of ‘state switching’ to regulate polarity in time and space
    corecore