33 research outputs found

    Mineral Surface Science and Nanogeoscience

    Get PDF
    In the last decades technological developments have revitalized a new area of research in Mineralogy with respect of the structure and reactivity of mineral surfaces. Mineral Surface Science is closely associated to the fields of Molecular Geochemistry and Biogeochemistry, concerning the investigation of geochemical processes at the molecular level. The expansion of both scientific subjects is based on the combined utilization of advanced microscopic and -surface- spectroscopic techniques, such as AFM, STM, TEM, SIMS, LIBS, and XPS. Nowadays, it is possible to study, by means of in situ AFM, crystal growth and dissolution processes occurring at mineral-fluid interfaces, in real time, also on a molecular scale (nanoscale). Moreover, accelerator-/Synchrotron-based techniques, including PIXE, NRRA, RBS, SR-(µ)XRF, SR-(µ)XRD and (µ)XANES/EXAFS, present new opportunities for Nanogeoscience and, in general, to Earth and Environmental Sciences. Mineral Surface Science and molecular Geochemistry have contributed to the establishment of Nanogeoscience with regard to the study of nanoparticles in nature and the investigation of geological processes in the nanoscale (1 nm–100 nm). As an example, a part of the research currently elaborated concerns the surface chemical behavior of calcite. This common carbonate mineral plays a major role in the global CO2 cycle, participates in key biomineralization processes, and shows high reactivity in fluids controlling the geoavailability and bioavailability of certain contaminants. On the other hand, nanoporous minerals, such as zeolites, clays, and Fe-Mn-oxides/oxyhydroxides, are important natural materials when studying the Earth and developing relevant Environmental Technology. Additionally, Mineral Surface Science and Nanogeoscience are crucial in ore systems research. This Special Issue focuses on recent advances in Mineral Surface Science and Nanogeoscience, including, but not limited to, topics such as crystal growth; mineral dissolution; nanominerals; mineral nanoparticles; nanoporous minerals; nanoscale ore mineralogy; environmental mineralogy; environmental nanoparticles; atmospheric particles; biominerals; medical mineralogy; nanofossils; and nanoscopic methods

    A distinct source and differentiation history for Kolumbo submarine volcano, Santorini 1 volcanic field, Aegean arc

    Get PDF
    This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low Pb-206/Pb-204 (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field

    Microscopic and spectroscopic investigation of the calcite surface interacted with Hg(II) in aqueous solutions

    Get PDF
    The interaction of the {101¯4} cleavage surface of calcite with Hg(CH3COO)2 aqueous solutions with concentration of 5 mM Hg(II) (pH ≈3.5), was investigated using microscopic and spectroscopic techniques. In situ atomic force microscopy experiments showed that surface microtopography changes significantly as a result of the interaction, and that the initial rhombic etch pits induced by H2O dissolution are rapidly transformed to deeper etch pits exhibiting an unusual triangular shape. The growth of these etch pits is strongly anisotropic, moving faster along the [22¯1] direction than along the [010] direction (with step-retreat velocities of ~12 nm s –1 and ~4 nm s–1, respectively). The modified etch pits are due to Hg(II) sorption in the surface, rather than due to the effect of the acetate anion. The sorption (adsorption and probably absorption also) of Hg(II), in the first minutes of the interaction, is shown by X-ray photoelectron spectroscopy. After ~2 h, the triangular etch pits are interconnected to form larger hexagonal etch pits, while Hg(II)-bearing phases (confirmed later by SEM-EDS) grow onto the surface through a heterogeneous nucleation process. The crystal growth of orthorhombic (montroydite-type) hydrated Hg(II) oxide (HgO·nH2O) on the surface of calcite was confirmed by XRD patterns and FT-IR spectra from samples exposed for longer times to Hg(CH3COO)2 solution

    Spectroscopic and nanoscale characterization of blue-coloured smithsonite (ZnCO3) from Lavrion historical mines (Greece)

    Get PDF
    Spectroscopic and microscopic (particularly HRTEM) techniques were used to investigate the origin of the colour of natural blue Zn-carbonate (smithsonite). Blue smithsonite is rich in copper, but substitution of zinc cations by copper cations, as proposed in the past for the origin of the colour, is questionable considering the absence of anhydrous divalent copper carbonates in nature. In this work, optical microscopy, SEM-EDS, XRD and laser micro-Raman could not resolve distinct phases either than Zn-carbonate, while NIR spectra excluded known chromophore Cu-hydroxycarbonate minerals. HRTEM studies however could clearly resolve nano-sized (3-7 nm) Cu-rich inclusions (specifically Si/Ca/Cu/As-rich inclusions of at least one phase), which are organised in bands with no topotaxial relation to bulk smithsonite. Electron-beam sensitivity of the samples, even at low electron current densities, did not allow the exact identification of the inclusions. However, it can be safely suggested, for the first time in the literature, that they are the cause of the blue colour in smithsonite

    Interaction of Calcium Carbonates with Lead in Aqueous Solutions

    Get PDF
    Pure calcium carbonate (calcite and aragonite) solid materials of different particle size (100-200 ím fragments and millimeter-sized single crystals) were interacted with Pb in aqueous solutions at room temperature under atmosphericPCO2. In the case of the micrometer-sized samples, the macroscopic investigation using a batch-type treatment procedure (solutions between 10 and 1000 mg/L Pb) and ICP-AES, SEM-EDS, and powder-XRD showed that the metal is readily removed from the aqueous media by both materials and indicated the sorption processes (mainly surface precipitation leading to overgrowth of cerussite and hydrocerussite crystals) taking place in parallel with surface dissolution processes. The various processes occurring at the calcium carbonate solid-water interface were clearly distinguished and defined in the case of the millimeter-sized samples interacted with 1000 mg/L Pb using a combination of wet-chemical, in-situ (AFM) and exsitu (AFM, SEM) microscopic, and surface spectroscopic (XPS, 12C-RBS) techniques. The in-situ AFM data revealed the dissolution processes on the surface of the calcium carbonates and the simultaneous heterogeneous nucleation of lead carbonate phases and confirmed the secondary dissolution of lead carbonate crystals grown epitaxially from the initial nuclei. The XPS spectra confirmed that adsorption of Pb occurs simultaneously to dissolution at short interaction times (less than 10 min, prior to precipitation-nucleation/crystal growth) in the case of both CaCO3 polymorphs and that the calcite surface with adsorbed Pb may have an aragonite-type character. The 2CRBS spectra indicated that absorption (incorporation of Pb2+ ions) also takes place in parallel at the surface layers of the calcium carbonates, resulting in formation of solid solutions

    Spatially and temporally variable sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece

    Get PDF
    Shallow-sea hydrothermal systems are ideal for studying the relative contributions to sedimentary sulfur archives from ambient sulfur-utilizing microbes and from fluxes of hydrothermally derived sulfur. Here we present data from a vent field in Palaeochori Bay, Milos, Greece using a suite of biogeochemical analytical tools that captured both spatial and temporal variability in biotic and abiotic sulfur cycling. Samples were collected along a transect from a seagrass meadow to an area of active venting. The abundance and isotopic composition of sulfide captured in situ, together with geochemistry from sedimentary porewaters and the overlying water column and solid phase sulfide minerals, record evidence of ephemeral activity of microbial sulfate reduction as well as sulfide oxidation. The sulfur and oxygen isotope composition of porewater sulfates indicate active sulfate reduction within the transition zone between the vents and seagrass, rapid recycling of biologically produced sulfide within non-vent sediments, and reoxidation of abiotic sulfide within the vent field. A phylogenetic survey of sediments also indicates the pervasive presence of a suite of putative sulfur-metabolizing bacteria, including sulfate reducers and sulfide oxidizers, many of which can utilize intermediate valence sulfur compounds. The isotopic composition of pyrite in these sediments consistently records a microbially influenced signature (δ34Spy of −4.4 to −10.8‰) relative to the hydrothermal endmember (δ34S ~ + 2.5‰), independent of distance from the vent source. The narrow range of pyrite δ34S across sediments with a highly variable hydrothermal influence suggests that physical mixing (e.g., by storm events) homogenizes the distribution of biogenic and hydrothermal Fe-sulfides throughout the region, overprinting the spatially and temporally variable interplay between biological and hydrothermal sulfur cycling in these environments

    Dissolution and sorption processes on the surface of calcite in the presence of high Co2+ concentration

    Get PDF
    The interaction of the calcite surface with Co2+-rich aqueous solutions ([Co2+aq]initial = 1000 ppm, i.e., ca. 17 mM) was investigated by means of macroscopic experiments and surface spectroscopic techniques. In the case of the macroscopic experiments, calcite powder and monocrystals were immersed into solutions for different time periods (from 1 min to one month). The Ca concentrations in the filtrates was measured by means of atomic absorption spectrometry (AAS) while the interacted solids were studied using a combination of X-ray photoelectron spectroscopy (XPS) and 12C-rutherford backscattering spectrometry (12C-RBS). The macroscopic data showed a characteristic surface dissolution process, in parallel to the surface sorption processes. Adsorption and co-precipitation were seen for almost the entire immersion period for both calcite powder and monocrystals. The surface study by XPS (analyzed at a depth of approximately 12 nm) suggested that adsorption takes place in the first hour of the interaction, followed by incorporation of Co2+ into calcite surface layers, leading to the formation of a Co2+-bearing surface (co)precipitate, which occurs over a period of hours and days. The 12C-RBS measurements on calcite { 10 1 ¯ 4 } indicated that the thickness of this surface co-precipitate was 270 nm after one day and then stabilized at 320 nm after more than a week
    corecore