206 research outputs found

    Trypanosoma equiperdum in the horse : a neglected threat?

    Get PDF
    Dourine is a contagious disease caused by Trypanosoma equiperdum that is transmitted directly from animal to animal during coitus. Dourine is known as an important disease in many countries, and it threatens equidae worldwide. It is reported to be widespread in South America, Eastern Europe, Russia, Mongolia, Namibia and Ethiopia. The disease can be carried to various parts of the world through the transportation of infected animals and semen. Since knowledge of the prepatent infectiousness of a recently infected animal is lacking, introduction of the disease is in principle an ever-present threat. Definitive diagnosis depends on the identification of the parasite by means of direct microscopy. This is rarely possible in practice and therefore, diagnosis in the field is based on the observation of typical clinical signs, together with serological tests. This paper is an endeavour to review briefly and compile information on the appearance and importance of Dourine in terms of its epidemiological and clinical features, as well as on its diagnosis, treatment and prognosis

    Drie nieuwe Ponto-Kaspische inwijkelingen dringen door tot in kanalen in de provincie Antwerpen: De zoetwaterpolychaet <i>Hypania invalida</i> (Grube, 1860) en, voor het eerst in België, de platworm <i>Dendrocoelum romanodanubiale</i> (Codreanu, 1949) en de Donaupissebed <i>Jaera istri</i> Veuille, 1979

    Get PDF
    Since 2000 three Ponto-Caspian invaders have been found in canals in the province of Antwerp (N.E.-Belgium): the freshwater polychaete Hypania invalida (Grube, 1860), the triclad Dendrocoelum romanodanubiale (Codreanu, 1949) and the freshwater isopod Jaera istri Veuille, 1979. Staff members of the 'Vlaamse Milieumaatschappij (Flemish Environmental Agency) collected these species on artificial substrates (nets filled with broken bricks). H. invalida had been discovered before in Belgium in the river Meuse in 2000 (Vanden Bossche et.al., 2001). D. romanodanubiale and J. istri were never recorded before in Belgium. Before its discovery in the Belgian Meuse in August-September 2000, H.invalida had already been found in May 2000 in the Albert Canal at Genk in the province of Limbourg. Between 2001 and 2003, the polychaete was sampled at several stations of the Albert Canal and its adjacent canals in the provinces of Antwerp and Limbourg. Here, it often is accompanied by D. romanodanubiale and J. istri. In 2003 the polychaet had also been encountered in the Sea canal Brussels - Scheldt in the province of Antwerp. The discontinuous distribution indicates that navigation plays an important role in the dispersal of the species. Other Ponto-Caspian species such as Dikerogammarus villosus (Sovinskij, 1894) are either already present in the canals or soon to be expected there. Some of these species will probably also invade the Scheldt basin

    Comparative clinico-pathological observations in young Zebu (Bos indicus) cattle experimentally infected with Trypanosoma vivax isolates from tsetse infested and non-tsetse infested areas of Northwest Ethiopia

    Get PDF
    BACKGROUND: The Northwest region of Ethiopia is affected by both tsetse and non-tsetse transmitted trypanosomosis with a huge impact on livestock productivity. The objective of this experimental study was to determine clinical and pathological findings in young Zebu cattle experimentally infected with Trypanosoma vivax isolates from tsetse infested and non-tsetse infested areas of Northwest Ethiopia. A total of 18 cattle (Bos indicus) aged between 6 and 12 months, purchased from a trypanosome-free and confirmed to be trypanosome negative divided into three groups of six animals were used. Animals in the first two groups (Group TT: tsetse infested isolate infected and Group NT: non-tsetse infested isolate infected) received 2 mL of infected blood from donor animals at 10(6) trypanosomes/mL, and the remaining group was non-infected control (NIC). Each group was observed for a period of eight consecutive weeks, daily for clinical signs and once per week for parasitaemia. Postmortem examinations were done on euthanized animals, and tissue samples were taken for histopathological analysis. RESULTS: The prepatent period of the disease was earlier in the NT group 6 days post infection (dpi) than TT group 12 dpi. The infection was characterized by reduced feed intake, intermittent pyrexia and parasitaemia, enlarged lymph nodes, lacrimation, reduced feed intake and emaciation. Less frequently diarrhea, oedema and nervous signs were observed in both groups of infected animals. At necropsy, infected animals showed enlarged spleen, enlarged lymph nodes, pneumonic and emphysematous lung, enlarged liver, and haemorrhages on the brain and intestine. Histopathological analysis revealed lymphoid hyperplasia of the spleen, necrosis of the liver, encephalitis and hyperplasia of lymph nodes. CONCLUSION: Trpanosoma vivax isolates from both tsetse infested and non-tsetse areas showed a variety of virulence factors leading to the development of acute clinical signs, gross and histopathological lesions. However, the parasitaemia and clinical signs appeared earlier in the NT compared to TT infected groups

    Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms

    Get PDF
    Relationships between traits of organisms and the structure of their metacommunities have so far mainly been explored with meta-analyses. We compared metacommunities of a wide variety of aquatic organism groups (12 groups, ranging from bacteria to fish) in the same set of 99 ponds to minimise biases inherent to meta-analyses. In the category of passive dispersers, large-bodied groups showed stronger spatial patterning than small-bodied groups suggesting an increasing impact of dispersal limitation with increasing body size. Metacommunities of organisms with the ability to fly (i.e. insect groups) showed a weaker imprint of dispersal limitation than passive dispersers with similar body size. In contrast, dispersal movements of vertebrate groups (fish and amphibians) seemed to be mainly confined to local connectivity patterns. Our results reveal that body size and dispersal mode are important drivers of metacommunity structure and these traits should therefore be considered when developing a predictive framework for metacommunity dynamics

    Prenatal muscle development in a mouse model for the secondary dystroglycanopathies

    Get PDF
    The defective glycosylation of α-dystroglycan is associated with a group of muscular dystrophies that are collectively referred to as the secondary dystroglycanopathies. Mutations in the gene encoding fukutin-related protein (FKRP) are one of the most common causes of secondary dystroglycanopathy in the UK and are associated with a wide spectrum of disease. Whilst central nervous system involvement has a prenatal onset, no studies have addressed prenatal muscle development in any of the mouse models for this group of diseases. In view of the pivotal role of α-dystroglycan in early basement membrane formation, we sought to determine if the muscle formation was altered in a mouse model of FKRP-related dystrophy

    Transgenic Rescue of the LARGEmyd Mouse: A LARGE Therapeutic Window?

    Get PDF
    LARGE is a glycosyltransferase involved in glycosylation of α-dystroglycan (α-DG). Absence of this protein in the LARGEmyd mouse results in α-DG hypoglycosylation, and is associated with central nervous system abnormalities and progressive muscular dystrophy. Up-regulation of LARGE has previously been proposed as a therapy for the secondary dystroglycanopathies: overexpression in cells compensates for defects in multiple dystroglycanopathy genes. Counterintuitively, LARGE overexpression in an FKRP-deficient mouse exacerbates pathology, suggesting that modulation of α-DG glycosylation requires further investigation. Here we demonstrate that transgenic expression of human LARGE (LARGE-LV5) in the LARGEmyd mouse restores α-DG glycosylation (with marked hyperglycosylation in muscle) and that this corrects both the muscle pathology and brain architecture. By quantitative analyses of LARGE transcripts we also here show that levels of transgenic and endogenous LARGE in the brains of transgenic animals are comparable, but that the transgene is markedly overexpressed in heart and particularly skeletal muscle (20–100 fold over endogenous). Our data suggest LARGE overexpression may only be deleterious under a forced regenerative context, such as that resulting from a reduction in FKRP: in the absence of such a defect we show that systemic expression of LARGE can indeed act therapeutically, and that even dramatic LARGE overexpression is well-tolerated in heart and skeletal muscle. Moreover, correction of LARGEmyd brain pathology with only moderate, near-physiological LARGE expression suggests a generous therapeutic window

    Genome-Wide SNP Analysis Reveals Distinct Origins of Trypanosoma evansi and Trypanosoma equiperdum.

    Get PDF
    YesTrypanosomes cause a variety of diseases in man and domestic animals in Africa, Latin America, and Asia. In the Trypanozoon subgenus, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause human African trypanosomiasis, whereas Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum are responsible for nagana, surra, and dourine in domestic animals, respectively. The genetic relationships between T. evansi and T. equiperdum and other Trypanozoon species remain unclear because the majority of phylogenetic analyses has been based on only a few genes. In this study, we have conducted a phylogenetic analysis based on genome-wide SNP analysis comprising 56 genomes from the Trypanozoon subgenus. Our data reveal that T. equiperdum has emerged at least once in Eastern Africa and T. evansi at two independent occasions in Western Africa. The genomes within the T. equiperdum and T. evansi monophyletic clusters show extremely little variation, probably due to the clonal spread linked to the independence from tsetse flies for their transmission.Funding was received from the Research Foundation Flanders (FWO, grants 1501413N and 1101614N) and the European DG Health and Food Safety (SANTE). We thank the Center of Medical Genetics at the University of Antwerp for hosting the NGS facility
    corecore