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Abstract

Trypanosomes cause a variety of diseases in man and domestic animals in Africa, Latin America, and Asia. In the Trypanozoon

subgenus, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause human African trypanosomiasis,

whereas Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum are responsible for nagana, surra,

and dourine in domestic animals, respectively. The genetic relationships between T. evansi and T. equiperdum and other

Trypanozoon species remain unclear because the majority of phylogenetic analyses has been based on only a few genes. In this

study, we have conducted a phylogenetic analysis based on genome-wide SNP analysis comprising 56 genomes from the

Trypanozoon subgenus. Our data reveal that T. equiperdum has emerged at least once in Eastern Africa and T. evansi at two

independent occasions in Western Africa. The genomes within the T. equiperdum and T. evansi monophyletic clusters show

extremely little variation, probably due to the clonal spread linked to the independence from tsetse flies for their transmission.

Key words: Trypanosoma evansi, Trypansoma equiperdum, Trypanozoon, whole genome sequencing, SNP analysis,

phylogeny.

Introduction

African trypanosomes are important causes of disease in man

and domestic animals in Africa, Latin America, and Asia. The

majority of the pathogenic African trypanosomes belongs to

the Nannomonas (e.g., Trypanosoma congolense), Dutonella

(e.g., Trypanosoma vivax), and Trypanozoon subgenera, com-

prising the species Trypanosoma brucei, Trypanosoma evansi,

and Trypanosoma equiperdum. Trypanosoma brucei has been

divided into three subspecies. Whereas Trypanosoma brucei

gambiense and Trypanosoma brucei rhodesiense are

responsible for human African trypanosomiasis (HAT) in

Western/Central and Eastern/Southern Africa, respectively,

Trypanosoma brucei brucei causes nagana in cattle, horses

and small ruminants. Trypanosoma evansi is responsible for

surra in camels, horses, and other domestic animals and T.

equiperdum seems to be restricted to horses and other

Equidae like donkeys and mules, causing dourine. This classi-

fication was established in the early 1900s and is based on

morphology, geographical distribution, clinical presentation

of the disease, and affected host species (Hoare 1972). In

recent decades, T. b. gambiense has been further subdivided

into group 1 and 2 (Gibson 1986). The former is a monophy-

letic group comprising most of the T. b. gambiense strains

(Weir et al. 2015), whereas the latter is a heterogeneous
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and rather ambiguous group of trypanosomes that have been

isolated from patients in Côte d’Ivoire in the late 1970s (Truc

et al. 1997). Trypanosoma evansi has also been subdivided in

the types A and B based on minicircle kDNA (Borst et al.

1987), and T. evansi type A is characterized by the immuno-

dominant RoTat 1.2 variable surface glycoprotein (VSG;

Bajyana Songa and Hamers 1988).

The three T. brucei subspecies undergo a complex cycle of

differentiation and multiplication in the tsetse fly but this is

not the case for T. evansi and T. equiperdum. Trypanosoma

evansi is not transmitted by tsetse flies but mechanically by a

wide range of biting flies, vampire bats and by ingestion of

raw meat, whereas T. equiperdum is transmitted sexually

(Desquesnes et al. 2013a, 2013b; Brun et al. 1998). With

transmission independent of tsetse flies, which are present

only in sub-Saharan Africa, T. evansi and T. equiperdum

have spread outside Africa and have even lost the ability to

develop in the fly. Survival of T. brucei inside the tsetse fly

requires the expression of numerous mitochondrial genes for

oxidative phosphorylation during ATP production (Bringaud

et al. 2006). Trypanosomes have a single mitochondrion or

‘kinetoplast’, which is organized in a complex network of in-

terlocked DNA circles with several thousands of minicircles

and a few dozen of maxicircles. Trypanosoma equiperdum

retained parts of its maxicircle kDNA, whereas T. evansi has

completely lost the maxicircle DNA (Lai et al. 2008). The ki-

netoplast DNA encodes proteins that are essential for the

survival of the trypanosomes in the blood, such as subunits

of respiratory chain complexes, in order to maintain the elec-

trochemical potential across the inner mitochondrial mem-

brane (Neupert et al. 1997; Bertrand et al. 2000). To

compensate for their incapability to express functional F1-

ATP synthase subunit a from their mitochondrial genome,

some of these dyskinetoplastid trypanosomes have acquired

compensatory mutations in the F1-ATP synthase subunit c
encoded in the nuclear DNA (Schnaufer et al. 2005; Lai

et al. 2008). Dean et al. (2013) recently showed that single

amino acid changes in the c subunit can fully compensate for

the loss of maxicircle kDNA in T. b. brucei.

The genetic relationships between T. evansi, T. equiper-

dum and the different pathogenic African trypanosomes

are unclear since the majority of phylogenetic analyses has

been based on only a few genes (Balmer et al. 2011). By

analyzing microsatellites and the genes coding for cyto-

chrome oxidase 1 (COX1), dihydrolipamide (LipDH), and

F1-ATP c-subunit, Carnes et al. showed that T. evansi and

T. equiperdum originated at least at four independent oc-

casions from T. brucei (2015). Recently, the first genome of

T. equiperdum (reference strain OVI) was sequenced and

annotated (Hebert et al. 2017). In the present study, we

have sequenced three additional T. equiperdum and three

T. evansi isolates and conducted a phylogenetic analysis us-

ing a global collection of 56 genomes of T. evansi, T. equi-

perdum, T. b. brucei, T. b. gambiense, and T. b. rhodesiense.

Our data reveal that the T. equiperdum, T. evansi type A,

and T. evansi type B genomes form distinct but highly ho-

mogenous clusters, whereby T. equiperdum is more related

to T. brucei from Eastern Africa and T. evansi to T. brucei

from Western Africa.

Materials and Methods

Sequence Data

Sequence data of three T. b. gambiense group 1, three T. b.

gambiense group 2, 17 T. b. rhodesiense, 21 T. b. brucei,

eight T. evansi, and four T. equiperdum strains were either

downloaded from publicly available sources (Sistrom et al.

2014; Berriman et al. 2005; Carnes et al. 2015; Goodhead

et al. 2013; Jackson et al. 2010; Hebert et al. 2017), or gen-

erated in this study. The complete list of 56 strains with infor-

mation on the country and year of isolation is presented in

supplementary table S1, Supplementary Material online. In

this study, genomes were sequenced of the T. b. gambiense

group 2 strain ABBA, T. evansi type A strains RoTat 1.2 and

MCAM/ET/2013/MU/09 (MU09), T. evansi type B strain

MCAM/ET/2013/MU/10 (MU10) and the T. equiperdum

strains BoTat, Dodola 943, and TeAp-N/D1 (Hide et al.

1990, Bajyana Songa & Hamers 1988; Birhanu et al.

2016; Claes et al. 2004, Hagos et al. 2010; Perrone et al.

2009; S�anchez et al. 2015b; S�anchez et al. 2015a; Capbern

et al. 1977; Mehlitz et al. 1982). The study protocol for

in vivo expansion of trypanosomes was approved by the

animal experimentation ethics committee of ITM

(BM2013-7). This protocol follows the European

Commission Recommendation on guidelines for the accom-

modation and care of animals used for experimental and

other scientific purposes (June 18, 2007, 2007/526/EG) and

the Belgian National law on the protection of animals under

experiment. Cryostabilates containing bloodstream forms

of the strains sequenced in this study were thawed at

37 �C, diluted in phosphate buffered saline (PSG, pH 8.0),

containing 1% glucose, and 2� 105 trypanosomes were

injected intraperitoneal in 25–30 g female OF-1 mice.

Parasitemia was measured daily using the matching method

(Herbert and Lumsden 1976). At the first peak of the para-

sitemia, usually after 3–4 days postinfection, the animal was

anesthetized and blood was collected with a heparinized

needle. Parasites were purified from the blood using anion

exchange chromatography (Lanham and Godfrey 1970),

washed twice in PSG and sedimented as pellets of pure

trypanosomes through centrifugation at 1,500� g for

10 min. Trypanosome pellets were stored at �80 �C until

DNA extraction using the QIAamp DNA mini kit (Qiagen,

Hilden, Germany). Sequencing libraries of the T. equiper-

dum strains Dodola 943, TeAp-N/D1, BoTat, OVI and T.

evansi strain RoTat 1.2 were prepared with the NEBNextV
R

DNA Library Prep Reagent Set. Clean-up of the library was

performed with Qiagen columns and size selection
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(�350 bp) by excision from a gel. The libraries were multi-

plexed, pooled and 2� 76 base pair (bp) reads were gen-

erated on two lanes with the Illumina GAIIX. Sequencing

libraries of the Ethiopian T. evansi strains MU09 and MU10

and the T. b. gambiense type 2 strain ABBA were prepared

with Illumina’s Nextera XT sample preparation kit and

2� 300 bp reads were generated with the Illumina MiSeq

(ABBA) or 2� 100 bp reads with the HiSeq 1500 (MU09

and MU10). Quality scored sequence reads have been

submitted to the NCBI Sequence Read Archive (SRA) with

accession numbers SRP100981 and SRP100990.

Genome-Wide SNP Analysis

All 56 genomes were aligned to the T. b. brucei TREU927

reference genome with Bowtie2 using default alignment pa-

rameters (Langmead and Salzberg 2012). The resulting SAM

files were converted to bam and sorted by position using

samtools (Li et al. 2009). Variants were called with

Samtools’ mpileup and the resulting vcf file was filtered to

retain only SNPs with read depths of at least 5 in all strains, a

SNP quality of at least 50, a mapping quality of at least 40 and

no significant strand bias (P> 0.05). The high mapping quality

cut-off prevents repetitive regions or unreliably mapped reads

from causing false positive SNPs.

For each strain, the number of heterozygous SNPs was

determined and SNPs were concatenated to a FASTA se-

quence. Invariant sites were removed from this SNP align-

ment and RaxML version 8.1.17 (Stamatakis 2014) was

employed to construct a maximum likelihood tree with

1,000 bootstrap replicate support. The phylogenetic tree

was created using a GTR CAT model of substitution with

Felsenstein correction for the ascertainment bias inherent

in SNP alignments, and visualized using FigTree version

1.4.2. In order to detect conflicting phylogenetic signals,

a split network was constructed using SplitsTree (Huson

and Bryant 2006). Finally, we generated phased haplotype

data using SHAPEIT v2 (Delaneau et al. 2013) using the

following parameters: 10 burn steps, 10 prune steps, 50

main steps, 200 conditioning states, and window size of

100 kb; for the remainder of the parameters we kept the

default values. The phased SNP data were used to infer

population genetic structure with fineSTRUCTURE v2

(Lawson et al. 2012) using default parameters.

Human Serum Resistance Genes, Diagnostic VSG’s, and
F1-ATP Synthase Subunit Gamma

For all genomes, we have investigated the presence and se-

quence of the trypanosomes’ human resistance genes, coding

for the T. b. rhodesiense specific Serum Resistance Associated

(SRA) protein (Xong et al. 1998), the T. b. gambiense specific

glycoprotein (TgsGP; Uzureau et al. 2013) and haptoglobin–

hemoglobin (TbHpHb) receptor (Vanhollebeke et al. 2008).

FASTA sequences of the reference genes (Genbank accession

number Z37159.2, FN555988, AF317914, and AY007705.1,

AY007706.1 and AJ870487, respectively) were downloaded

and the reads from the 56 sequenced genomes were mapped

against these references sequences. Bowtie2 was used in local

mode to cover both the beginning and the end of the genes,

except for the VSG’s that required the full read sequence

alignment given their repetitive nature. Following alignment,

the frequency of each nucleobase per position was calculated

and nucleobases with a frequency of minimum 0.25 for a

certain position were retained and represented as ambiguity

bases, where necessary. Positions with a coverage <10 were

represented as “N”. Presence or absence of genes was man-

ually verified in the alignments using Integrative Genomics

Viewer (IGV). Genes were considered present if there were

mapping reads for each nucleobase position in the gene.

Sequences of the F1-ATPase subunit c genes, as well as the

corresponding amino acids, were aligned using Clustal

Omega (Sievers et al. 2011).

Results

Genome-Wide SNP Analysis

All genomes had an average coverage of at least 29.6�, ex-

cept DAL972 which had 5.7� coverage and was the only

genome in the data set sequenced with the Sanger method

(supplementary table S2, Supplementary Material online). In

total, 890,170 SNPs were called in the genomes of the 56

Trypanosoma strains and 194,566 passed our filtering criteria.

The filtered SNPs were used to construct a Neighbournet net-

work (fig. 1), a haplotype-based clustering analysis (fig. 2),

and a RAxML Maximum Likelihood tree (supplementary fig.

S1, Supplementary Material online).

All three analyses revealed a similar evolutionary history for

T. evansi and T. equiperdum. The 6 T. evansi type A strains

form a monophyletic cluster and exhibit only minor SNP var-

iation over time and space although they were isolated from

different animal species in Kenya, Ethiopia, Brazil, Indonesia,

and China between 1980 and 2013. Within this cluster, the

largest genomic difference was found between STIB810 and

E110 with a total of only 2,534 SNP differences (homozygous

and heterozygous). The African strains C13 and MU09

showed the lowest genomic difference (375 SNPs) and

were more closely related to the Brazilian strain E110 than

to the Asian strains STIB805, STIB810, and RoTat 1.2. The two

T. evansi type B strains KETRI2479 and MU010 also form a

monophyletic cluster, which has emerged separately from the

ancestor of Western/Central African trypanosomes.

The T. equiperdum strains are genetically most related to

the Eastern African T. brucei strains. The T. equiperdum strains

Dodola 943, TeAp-N/D1, and OVI form a monophyletic clus-

ter, closely related to the Kiboko T. b. brucei strains TREU927

and KETRI1738 and the T. b. rhodesiense strain EATRO 240.

We observed only 27 SNP differences (homozygous and het-

erozygous) between the T. equiperdum genomes of Dodola

Cuypers et al. GBE
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943 and TeAp-N/D1, 27 SNP differences between OVI and

TeAp-N/D1, and 24 SNP differences between Dodola 943 and

OVI. The T. equiperdum strain BoTat, isolated from a horse in

Morocco is distinct from this monophyletic cluster and its ge-

nome is closely related to the T. b. brucei strain J10 isolated

from a hyena in Zambia. Both BoTat and J10 show an uncer-

tain ancestry and share haplotypes with T. b. rhodesiense

EATRO 240, T. b. brucei TRUE972 and KETRI1738, and T.

equiperdum Dodola 943, TeAp-N/D1 and OVI (fig. 2). To a

lower extent, they also share haplotypes with Eastern and

Western African T. brucei strains.

Subgroup-Specific SNPs

SNPs unique for T. evansi type A, T. evansi type B, T. equiper-

dum BoTat and the T. equiperdum Dodola 943, TeAp-N/D1,

and OVI monophyletic cluster were identified. We only in-

cluded mutations that differed from the homozygous refer-

ence state (compared with the reference genome TREU927)

by being homozygous for the alternative allele. The complete

list of SNPs for each studied subgroup is presented in supple-

mentary table S3, Supplementary Material online. We identi-

fied 354 SNPs that are unique to the monophyletic T.

equiperdum cluster with Dodola 943, TeAp-N/D1 and OVI,

and that did not occur in any other of the 53 strains of this

study. Of the 354 SNPs, 224 were in coding regions of which

109 were nonsynonymous substitutions. In the T. equiperdum

BoTat strain, 1,425 unique SNPs were observed, of which 850

in coding regions and 429 were nonsynonymous substitu-

tions. Only five unique SNPs were shared by all T. equiperdum

genomes, including the distinct BoTat genome. For T. evansi

type B we detected 701 unique SNPs of which 454 in coding

regions and 238 were nonsynonymous substitutions. An over-

view of the subgroup specific SNPs is presented in supplemen-

tary table S2, Supplementary Material online.

Human Serum Resistance Genes, Diagnostic VSG’s, and
F1-ATP Synthase Subunit c

The TgsGP gene was detected in all T. brucei gambiense

group 1 strains and in none of the other trypanosomes. The

T. b. gambiense group 1 specific S210 codon in the TbHpHbR

gene was also unique for all T. b. gambiense group 1 strains,

whereas the other strains in this study coded for L210 in the

TbHpHbR gene. All T. b. rhodesiense genomes contained

SRA, except EATRO240. Surprisingly, the T. b. rhodesiense

T.b. gambiense group 1
T.b. gambiense group 2
T.b. rhodesiense
T.b. brucei
T.b. evansi
T.b. equiperdum

FIG. 1.—NeighborNet network based on 194,566 genome-wide SNP loci in 3 Trypanosoma brucei gambiense group 1, 3 T. b. gambiense group 2, 17

Trypanosoma brucei rhodesiense, 21 Trypanosoma brucei brucei, 8 Trypanosoma evansi, and 4 Trypanosoma equiperdum strains.
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specific SRA gene was also detected in the T. b. brucei strains

H883 and STIB213 isolated respectively from a dog in Uganda

and a hyena in Tanzania. RoTat 1.2 was found in all T. evansi

type A strains and not in any other strain. In contrast, our data

show that the VSG JN 2118HU, considered to be unique to T.

evansi type B, is also present in the T. b. gambiense type 2

strains ABBA, TH126 and STIB 386, and the T. b. brucei strains

B8/18 Clone B, KP33 Clone 16 and TSW187/78E. The se-

quences for JN 2118HU were not identical in all genomes

but there was not a single SNP identified that is unique for

T. evansi type B. F1-ATP synthase subunit c DNA and amino

acid sequences were aligned for all genomes included in this

study (supplementary figs. S2 and S3, Supplementary Material

online). The nonsynonymous heterozygous substitution

C142C/T (R48R/G) and heterozygous deletion GCT841del

(A281del) are unique for all T. evansi type A strains, and the

heterozygous A844A/T (M282M/L) for all T. evansi type B

strains. The nonsynonymous homozygous substitution

G817C (A273P) is unique for the T. equiperdum BoTat strain.

Discussion

We have undertaken a phylogenetic analysis of 56

genomes from the Trypanozoon subgenus. This study

provides new insights into the origin of T. evansi and T.

equiperdum and their relation with the different T. brucei

subspecies. We show that T. evansi emerged at least on

two independent occasions from a West African T. brucei

ancestor, whereas T. equiperdum emerged from East-African

T. brucei.

The genomes of the T. evansi type A and type B strains are

grouped in two distinct but highly monophyletic clusters, al-

though the strains within each type span different continents

and >30 years. Our phylogenetic analysis indicates that both

emerged from the same pool of T. brucei strains isolated in

Western Africa, but on two different occasions. This observa-

tion is surprising because T. evansi type B has only been re-

ported in Eastern Africa. However, given the lack of reliable

diagnostic tools, T. evansi type B is probably present but not

detected in Western and Northern Africa. The T. evansi type B

strains KETRI 2479 and MU010 lack the RoTat 1.2 gene which

is primarily used to identify T. evansi type A isolates. Our ob-

servations are in line with the hypothesis of Lun et al. who

suggested in 1992 that T. evansi type A has emerged from a

single T. brucei strain from Western Africa. Our data further

indicate that the host and route of transmission shared by T.

evansi type A and type B are due to parallel but independent

evolutions, and that T. evansi is in fact a paraphyletic group.

0.97

0.117

33.4

66.8

100

133

167

200

233

267

300

LF1

STIB776
STIB213

LVBG3N

LVH56

KETRI1902

STIB247

STIB348

058

STIB704BA
STIB 324

427 var 3

H879

H884
H865

STIB809

Z310
B17

H886

H885

H883

H880

H887

H866

H870

EATRO3

EATRO2340

KETRI1738
TREU972

EATRO0240

TeAp-N/D1
OVI

Dodola 943

J10
BoTat

B8/18 clone b
ABBA

SW3/87

LM 56 Clone 6
TSW 55

TH126
STIB386

KP33 clone 16
PTAG 129

TSW 187/78E

C13
MU09

STIB810

E110

STIB805

RoTat 1.2

Fontem  strain 10

1829 (Aljo)
DAL972

Ketri 2479
MU10

West-African 
clade

East-African
 clade

0.97

T. evansi B

T. gambiense 1

T. evansi A (Asia & Brazil)

T. evansi A (Africa)

T. gambiense 2

T. b. brucei (DRC)

T. b. brucei (Ivory Coast)

T. equiperdum

T. gambiense 2
T. b. brucei (Nigeria) 
T. equiperdum
T. b. brucei (Zambia)

T. b. rhodesiense (Uganda) 

T. b. brucei (Kenya)

T. b. brucei (Ivory Coast)

T. b. rhodesiense (Uganda)

T. b. rhodesiense (Uganda)
T. b. brucei (Uganda)

T. b. rhodesiense (Uganda)

T. b. rhodesiense (Uganda)
T. b. rhodesiense (Uganda)

T. b. rhodesiense (Ethiopia)
T. b. rhodesiense (Uganda)

T. b. brucei (Uganda)
T. b. brucei (Uganda)

T. b. brucei (Uganda)

T. b. rhodesiense (Tanzania)

T. b. rhodesiense (Zambia) 
T. b. brucei (Tanzania)
T. b. brucei (Tanzania)
T. b. brucei (Kenya)
T. b. rhodesiense (Kenya) 
T. b. brucei (Kenya)
T. b. brucei (Tanzania) 
T. b. brucei (Uganda)
T. b. brucei (Kenya)

LF
1

S
T

IB
776

S
T

IB
213

LV
B

G
3N

LV
H

56

K
E

T
R

I1902

S
T

IB
247

S
T

IB
348

058

S
T

IB
704B

A

S
T

IB
 324

427
var 3

H
879

H
884

H
865

S
T

IB
809

Z
310

B
17

H
886

H
885

H
883

H
880

H
887

H
866

H
870

E
AT

R
O

3

E
AT

R
O

2340

K
E

T
R

I1738

T
R

E
U

972

E
A

T
R

O
0240

T
eA

p-N
/D

1

O
V

I

D
odola 943

J10

B
otat

B
8/18 clone b

A
B

B
A

S
W

3/87

LM
 56 C

lone 6

T
S

W
 55

T
H

126

S
T

IB
386

K
P

33 clone 16

P
TA

G
 129

T
S

W
 187/78E

C
13

M
U

009

S
T

IB
810

E
110

S
T

IB
805

R
oTat 1.2

F ontem
  strain 10

1829 (A
ljo)

D
A

L972

K
etri 2479

M
U

010

FIG. 2.—Coancestry matrix based on phased haplotype data. Heatmap summarizes the number of haplotype segments (color key on the right) that a

given parasite received (rows) from any another parasite (columns). Individuals are ordered along each axis according to the tree (left) inferred from the

fineSTRUCTURE run.

Cuypers et al. GBE

1994 Genome Biol. Evol. 9(8):1990–1997 doi:10.1093/gbe/evx102 Advance Access publication May 25, 2017

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article-abstract/9/8/1990/3852529 by U

niversity of Bradford user on 13 August 2019

Deleted Text: non-synonymous
Deleted Text: non-synonymous
Deleted Text: <italic>Trypanosoma</italic>
Deleted Text: 2
Deleted Text: while
Deleted Text: more than 
Deleted Text: (1992) 
Deleted Text:  (1992).


The T. equiperdum strains TeAp-N/D1 (Venezuela), OVI

(South Africa), and Dodola 943 (Ethiopia) also form a highly

monophyletic cluster, although the strains have been col-

lected in different continents and over a period of 30 years.

This T. equiperdum cluster is most closely related to T. b.

brucei Kiboko strains KETRI 1738, TREU927 and T. b. brucei

EATRO240, confirming previous findings based on microsat-

ellite markers (Carnes 2015). Because of their close genetic

distance from the Kiboko strains, they share identical COX1,

LipDH and F1-ATP c-subunit genes, making it impossible to

distinguish them based on these genes only (Carnes 2015).

The T. equiperdum BoTat strain, isolated in 1924 in Morocco,

emerged from an event distinct from the other T. equiperdum

strains included in this study. Our haplotype coancestry anal-

ysis indicates that BoTat may have undergone recombination

with the T. b. brucei strain J10.

We hypothesize that the small genetic variation within T.

evansi and T. equiperdum is due to the restricted host range

(camelids and Equidae, respectively) and the fact that T. evansi

and T. equiperdum do not have cyclical transmission through

the tsetse fly, where genetic recombination between trypano-

somes occurs (Gibson 2015). The number of heterozygous

SNPs in T. evansi and T. equiperdum were amongst the lowest

in our data set and the splitstree network shows no reticulate

events for the T. evansi and T. equiperdum strains, except

BoTat, and they cluster tightly at the tips, indicating absence

of recombination. The T. evansi and T. equiperdum clusters

are situated at the two extreme ends of the Trypanozoon

phylogenetic network. This is particularly interesting since

this means that dyskinetoplasty, and thus tsetse fly indepen-

dent transmission, has evolved independently at least four

times. This efficient transmission strategy has enabled T.

evansi and T. equiperdum to spread across the globe, as pre-

viously postulated by Lun et al. (1995) and Jensen et al.

(2008). On the basis of our observations, the classification

of T. evansi and T. equiperdum as species does not reflect

their evolutionary background. Indeed, the genetic distance

between Western and Eastern African T. b. brucei strains is

larger than the differences between many T. b. brucei and T.

evansi or T. equiperdum. On the basis of this genomic infor-

mation, T. evansi and T. equiperdum could be regarded as

subspecies of T. brucei (T. b. evansi and T. b. equiperdum), as

previously suggested by Claes et al. (2005), Lai et al. (2008).

However, T. b. evansi and T. b. equiperdum would both re-

main polyphyletic species. Hence, T. b. evansi type A and T. b.

evansi type B, T. b. equiperdum type OVI and T. b. equiper-

dum type BoTat would be a more correct classification.

For T. equiperdum there are currently no genetic markers

for identification. Trypanosoma evansi type B is identified us-

ing PCR with primers targeting either the nuclear encoded

VSG JN 2118HU gene or the EVAB gene in the minicircles.

However, Birhanu et al. (2016) showed that this VSG JN

2118HU also occurs in T. b. gambiense type 2 ABBA and T.

brucei AnTat 1.1. Our genome data show additional presence

of VSG JN 2278HU in several other West-African T. b. brucei

indicating that this gene is not a specific marker for T. evansi

type B. Also, T. evansi type B diagnosis with the EVAB PCR,

which targets a T. evansi B specific minicircle sequence, is

questionable. Since T. evansi lacks maxicircles, there might

be no known remaining function and therefore no selective

pressure for minicircles left. Indeed it has been shown that

akinetoplasty occurs in T. evansi frequently in vivo and in vitro

(Schnaufer et al. 2002). Whether akinetoplasty also occurs

naturally in T. evansi type B is presently not known, and con-

sequently using nuclear markers for genotyping would be a

more secure option. In our work, we have identified 702 ho-

mozygous SNPs, of which 239 nonsynonymous nuclear coded

ones are unique for T. evansi type B and could therefore be

promising candidate markers for molecular identification. Our

genome-wide SNP analysis also identified 354 homozygous

SNPs that are all unique for the monophyletic T. equiperdum

OVI, Dodola 943, and TeAp-N/D1 strains and may be prom-

ising candidate genetic markers for typing and diagnosis.

Dean et al. have reported specific single amino acid muta-

tions in the nuclearly encoded F1-ATPase subunit c of T. equi-

perdum and T. evansi that compensate for loss of their

kinetoplast DNA (2013). They showed that the homozygous

A273P substitution in T. equiperdum BoTat is sufficient for

normal growth in the absence of kDNA. The heterozygous

mutations A281del and M282L, were reported to be second-

ary adaptations and not sufficient for survival (Dean et al.

2013). These amino acid mutations were also observed in

our genome data: A273P was only present in T. equiperdum

strain BoTat, A281del in all T. evansi type A strains and

M282M/L in all T. evansi type B strains.

The 21 T. b. brucei strains are very heterogeneous and

scattered around the network. In addition, the 17 T. b. rho-

desiense strains are present within all major clades of East

African T. b. brucei. Trypanosoma brucei brucei strains from

Western Africa showed to be most related to T. b. gambiense

group 1, group 2 and T. evansi. Further downstream the phy-

logenetic network, the T. b. brucei and T. b. rhodesiense

strains are spread geographically from central Africa

(Uganda) to Eastern Africa (Kenya, Tanzania and Zambia).

This is in line with the observations of Sistrom et al. (2014)

who showed that geography significantly accounts for cluster

assignment in T. brucei. Most of the T. brucei genomes se-

quenced by Sistrom et al. (2014) are also part of our analysis.

In addition, our network shows that the T. b. brucei genomes

are less heterogeneous in Western and Central Africa com-

pared with East Africa, suggesting an Eastern African origin.

This polyphyletic character of T. b. brucei and T. b. rhode-

siense suggests multiple origins of T. b. rhodesiense and sup-

ports the hypothesis suggested by Gibson et al. (2002) that

the SRA gene can be exchanged between T. b. brucei and T.

b. rhodesiense through recombination. A reticulated network

(fig. 1) and the fragmented haplotypic ancestry of most par-

asites (fig. 2) indicate that recombination events are frequent.
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This complex phylogenetic background makes the status of T.

b. rhodesiense confusing, since its current classification based

on the presence of the SRA gene does not mimic its popula-

tion genomic structure (Sistrom et al. 2016). It was therefore

no surprise that we observed several misclassifications in our

strain set. SRA was present in the genomes of the T. b. brucei

strains H883 and STIB213, showing that these strains have

probably been misclassified as T. b. brucei and are in fact T. b.

rhodesiense. For H883, this correlates with its place in the

phylogenetic network, since it was the only outlier in a group

of 10 Ugandan T. b. rhodesienses strains (H866, H870, B17,

Z310, H887, EATRO2340, EATRO3, H885, H880). On the

other hand, we found no evidence of SRA in EATRO240.

This strain was isolated from a patient in Uganda in 1961

and, apart from the possibility of strain contamination, might

thus have been an atypical human infection with T. b. brucei.

Human infections with animal trypanosomes have been

linked to dysfunctional APOL1 in the patient’s serum

(Vanhollebeke et al. 2006; Cuypers et al. 2016).

In summary, we have presented the first whole genome

SNP analysis of T. evansi and T. equiperdum and provided new

insights in the origin of both species and their relation with the

different T. brucei subspecies. That T. evansi type A, T. evansi

type B and T. equiperdum have emerged independently from

each other was already observed by Carnes et al. (2015), using

four molecular markers (microsatellites, COX1, LipDH, and F1-

ATP c-subunit) and with only one isolate for all groups except

T. evansi type A. Our study was based on genome-wide SNP

analysis of 56 Trypanozoon genomes, including eight T. evansi

and four T. equiperdum, providing new insights in the geo-

graphical origins of T. evansi and T. equiperdum. The T. evansi

types A and B genomes are related to the T. brucei genomes

from Western Africa whereas the T. equiperdum genomes

relate to the T. brucei genomes from Eastern Africa.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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