44 research outputs found

    Non-Singularity of the Exact Two-Dimensional String Black Hole

    Full text link
    We study the global structure of the exact two-dimensional space-time which emerges from string theory. Previous work has shown that in the semi-classical limit, this is a black hole similar to the Schwarzschild solution. However, we find that in the exact case, a new Euclidean region appears "between" the singularity and black hole interior. However the boundary between the Lorentzian and Euclidean regions is a coordinate singularity, which turns out to be a surface of time reflection symmetry in an extended space-time. Thus strings having fallen through the black hole horizon would eventually emerge through another one into a new asymptotically flat region. The maximally extended space-time consists of an infinite number of universes connected by wormholes. There are no singularities present in this geometry. We also calculate the mass and temperature associated with the space-time.Comment: 9 pages, latex, DAMTP R93/

    Exact S-Matrices with Affine Quantum Group Symmetry

    Full text link
    We show how to construct the exact factorized S-matrices of 1+1 dimensional quantum field theories whose symmetry charges generate a quantum affine algebra. Quantum affine Toda theories are examples of such theories. We take into account that the Lorentz spins of the symmetry charges determine the gradation of the quantum affine algebras. This gives the S-matrices a non-rigid pole structure. It depends on a kind of ``quantum'' dual Coxeter number which will therefore also determine the quantum mass ratios in these theories. As an example we explicitly construct S-matrices with Uq(cn(1))U_q(c_n^{(1)}) symmetry.Comment: Latex file, 21 page

    Toda Soliton Mass Corrections and the Particle--Soliton Duality Conjecture

    Full text link
    We compute quantum corrections to soliton masses in affine Toda theories with imaginary exponentials based on the nonsimply-laced Lie algebras cn(1)c_n^{(1)}. We find that the soliton mass ratios renormalize nontrivially, in the same manner as those of the fundamental particles of the theories with real exponentials based on the nonsimply-laced algebras bn(1)b_n^{(1)}. This gives evidence that the conjectured relation between solitons in one Toda theory and fundamental particles in a dual Toda theory holds also at the quantum level. This duality can be seen as a toy model for S-duality.Comment: LATEX, 17 pages, no figures Note added at end of discussio

    Kac-Moody algebras in perturbative string theory

    Get PDF
    The conjecture that M-theory has the rank eleven Kac-Moody symmetry e11 implies that Type IIA and Type IIB string theories in ten dimensions possess certain infinite dimensional perturbative symmetry algebras that we determine. This prediction is compared with the symmetry algebras that can be constructed in perturbative string theory, using the closed string analogues of the DDF operators. Within the limitations of this construction close agreement is found. We also perform the analogous analysis for the case of the closed bosonic string.Comment: 31 pages, harvmac (b), 4 eps-figure

    Understanding person acquisition using an interactive activation and competition network

    No full text
    Face perception is one of the most developed visual skills that humans display, and recent work has attempted to examine the mechanisms involved in face perception through noting how neural networks achieve the same performance. The purpose of the present paper is to extend this approach to look not just at human face recognition, but also at human face acquisition. Experiment 1 presents empirical data to describe the acquisition over time of appropriate representations for newly encountered faces. These results are compared with those of Simulation 1, in which a modified IAC network capable of modelling the acquisition process is generated. Experiment 2 and Simulation 2 explore the mechanisms of learning further, and it is demonstrated that the acquisition of a set of associated new facts is easier than the acquisition of individual facts in isolation of one another. This is explained in terms of the advantage gained from additional inputs and mutual reinforcement of developing links within an interactive neural network system. <br/

    On the complete classification of the unitary N=2 minimal superconformal field theories

    Get PDF
    Aiming at a complete classification of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each modular invariant candidate of a partition function for such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments.Comment: 53 pages; Latex; minor changes in v2: intro expanded, references added, typos corrected, footnote added on p31; renumbering of sections; main theorem reformulated for clarity, but contents unchanged. Minor revisions in v3: typos corrected, footnotes 5, 6 added, lemma 1 and section 3.3.2 rewritten for greater generality, section 3.3 review removed. To appear in Comm. Math. Phy

    Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots, and vortices

    Full text link
    We consider Seiberg electric-magnetic dualities for 4d N=1\mathcal{N}=1 SYM theories with SO(N) gauge group. For all such known theories we construct superconformal indices (SCIs) in terms of elliptic hypergeometric integrals. Equalities of these indices for dual theories lead both to proven earlier special function identities and new conjectural relations for integrals. In particular, we describe a number of new elliptic beta integrals associated with the s-confining theories with the spinor matter fields. Reductions of some dualities from SP(2N) to SO(2N) or SO(2N+1) gauge groups are described. Interrelation of SCIs and the Witten anomaly is briefly discussed. Possible applications of the elliptic hypergeometric integrals to a two-parameter deformation of 2d conformal field theory and related matrix models are indicated. Connections of the reduced SCIs with the state integrals of the knot theory, generalized AGT duality for (3+3)d theories, and a 2d vortex partition function are described.Comment: Latex, 58 pages; paper shortened, to appear in Commun. Math. Phy
    corecore