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Abstract

Aiming at a complete classification of unitary N = 2 minimal models (where
the assumption of space-time supersymmetry has been dropped), it is shown
that each candidate for a modular invariant partition function of such a the-
ory is indeed the partition function of a minimal model. A family of models
constructed via orbifoldings of either the diagonal model or of the space-time
supersymmetric exceptional models demonstrates that there exists a unitary
N = 2 minimal model for every one of the allowed partition functions in the list
obtained from Gannon’s work [26].

Kreuzer and Schellekens’ conjecture that all simple current invariants can
be obtained as orbifolds of the diagonal model, even when the extra assumption
of higher-genus modular invariance is dropped, is confirmed in the case of the
unitary N = 2 minimal models by simple counting arguments.

We find a nice characterisation of the projection from the Hilbert space of a
minimal model with k odd to its modular invariant subspace, and we present a
new simple proof of the superconformal version of the Verlinde formula for the
minimal models using simple currents.

Finally we demonstrate a curious relation between the generating function
of simple current invariants and the Riemann zeta function.
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Chapter 1

Introduction

Conformal field theories (CFTs) [3, 33, 8, 22, 21] have been a well-studied area
of research since they first became a hot topic following the publication of the
seminal paper of Belavin, Polyakov and Zamolodchikov in 1984 [3]. In their
paper, they laid down the formalism of conformal field theories by combining
the representation theory of the Virasoro algebra with the concept of local op-
erators, and discovered the minimal models. The term minimal indicates that
the Hilbert space of the CFT decomposes into only finitely many irreducible
representations of (two commuting copies of) the Virasoro algebra. The exis-
tence of null-vectors in the Hilbert spaces of minimal models permit ODEs to
be derived, which in turn allow the minimal models to be completely solved.

Miraculously, the minimal models turned out to describe phenomena in sta-
tistical mechanics [6]; most notable is their description of 2nd or higher order
phase transitions, e.g. the Ising model [51, 3] and the tri-critical Ising model [20].
Once the inequivalent irreducible unitary representations of the Virasoro algebra
with central charge 0 ≤ c < 1 were known, the next problem was to piece them
together in a modular invariant way (see section 2.2.4). All modular invariant
combinations were found to fall into the well-known A-D-E meta pattern (see
e.g. [71]).

The classification of other classes of conformal field theories has been the
aim of much work, and is an ongoing project. Most promising is the study of
rational theories, whose Hilbert spaces may contain infinitely many irreducible
representations of the Virasoro algebras, but which can be organised into a finite
sum of representations of some larger so-called W -algebra. An important source
of rational theories are the WZW models [66, 67]: families of theories, which can
be constructed for any semi-simple finite-dimensional Lie algebra g. Many of
the families of WZW models have been at least partially classified [25, 24], the
most famous being the complete classification of the g = su(2) case [5], which
again falls into an A-D-E classification.

Another source of rational CFT is inspired by string theory [2, 36, 37, 53],
the most promising candidate for a description of the fundamental forces of
the universe. String theorists have developed the notion of supersymmetry, the
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idea that there is a symmetry between bosonic and fermionic matter in our
universe. In mathematical terms, the Virasoro algebra is enlarged by adding
N supersymmetry operators (and their super partners). One can then consider
superconformal field theories (SCFTs), theories that fall into representations of
this enlarged algebra. The minimal unitary N = 2 superconformal field theories,
for example, provide building blocks for Gepner models [38].

Contrary to popular belief, to date the unitary N = 2 minimal models [4,
10, 9, 68, 47, 43, 57, 55, 54] have not been completely classified. It is commonly
stated that they also fall into the A-D-E meta-pattern, due to the work of [46,
62, 7], in which those unitary N = 2 minimal models that enjoy space-time
supersymmetry are demonstrated to be in one-to-one correspondence with the
A-D-E simple singularities. But when one quite reasonably drops the condition
of space-time supersymmetry, one finds a much larger possible set of solutions.

The condition of space-time supersymmetry means that there should be a
fundamental symmetry between space-time bosons and fermions; in a SCFT,
the symmetry implies that all information about the space-time anti-periodic
fields (the R sector) is encoded by the space-time periodic fields (the NS sector)
and vice versa. This relation is encoded by the spectral flow (see e.g. [38] and
section 3.4), which provides an explicit map from one sector to the other in
supersymmetric theories.

Gannon [26] classified the possible partition functions of the unitary N = 2
minimal models, showing that in fact there is a much larger playground than
previously suspected: there are finitely many partition functions at each level k,
but the number is unbounded as k increases, in contrast with the N = 0 case.
There are also many more “exceptional” cases; 10, 18 and 8 corresponding to
what are somewhat misleadingly termed E6, E7 and E8 models, respectively.

Two natural questions then arise: do all of these partition functions belong
to genuine SCFTs, or are some just mathematical curiosities? And could there
be more than one minimal model associated to each partition function? In
this thesis we answer the first of these questions. Perhaps surprisingly, it can
be resolved using only orbifold-related arguments. It turns out that orbifold-
ings [13, 14] from every possible partition function to the partition function of
one of a small list of well-known and fully understood models can be explicitly
calculated, showing that each partition function is indeed that of a fully-fledged
SCFT. This is an important step towards the full classification of the unitary
N = 2 minimal models.

We note that Kreuzer and Schellekens [45] have proved a related result. They
construct simple current modular invariant partition functions via orbifoldings
of the diagonal model and use the further assumption of higher-genus modular
invariance to show that all simple current modular invariant partition functions
can be obtained this way. They hypothesise that this extra assumption is un-
necessary, which we are able to confirm for the case of unitary N = 2 minimal
models by simple counting arguments.

The layout of the thesis is as follows. Chapter 2 is a review of unitary N = 2
superconformal field theories, and of simple currents. We use simple current
arguments to prove the N = 2 version of Verlinde’s formula for the minimal
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models. We then investigate some symmetries of the partition functions of the
minimal models.

In chapter 3 we describe Gannon’s program of classifying the possible parti-
tion functions of the unitary N = 2 minimal SCFTs, and present the statement
of the result (which did not appear explicitly in [26]) with a few minor errors cor-
rected. We illustrate the classification of the partition functions with examples
at the first two levels, and use the list to confirm the classification of the N = 2
models which enjoy space-time supersymmetry. A natural characterisation of
the projection to the modular invariant subspace of the theories with k odd
is given, followed by a review of the parafermion construction of the minimal
models due to Zamolodchikov and Fateev [17, 69] and to Qiu [55]. Lastly, we
perform some non-trivial checks on the candidate theories from Gannon’s list
and present as examples the field content of the theories at k = 1, 2.

Chapter 4 contains a brief review of orbifold techniques, followed by the
statement and proof of the main theorem: every candidate partition function,
listed in section 3.2, belongs to a fully-fledged SCFT. The proof is an explicit
construction of orbifoldings from any given partition function to one of a few
fixed and fully understood SCFTs.

In chapter 5 we calculate the number of simple current physical invariants
and confirm a hypothesis of Kreuzer and Schellekens for the special case of the
unitary N = 2 minimal models; namely, that every simple current invariant is
obtained via an orbifold of the diagonal model. Finally we present a mathemat-
ical curiosity relating the number of simple current invariants at each level to
the Riemann zeta function.

Chapter 6 contains our conclusions.
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Chapter 2

N = 2 Superconformal Field
Theories

2.1 The N = 2 super Virasoro algebra

N = 2 superconformal field theories (SCFTs) were first constructed by Ade-
mollo et al [1] by introducing U(1) Kac-Moody algebra symmetries along with
two supersymmetry generators, in addition to the N = 0 Virasoro field. They
are quantum field theories that enjoy N = 2 supersymmetry, or, in more math-
ematical terms, theories whose pre-Hilbert spaces form representations of the
N = 2 super Virasoro algebra (SVA). The approach of Belavin, Polyakov and
Zamolodchikov in their seminal paper [3] can be applied to N = 2 extended
SCFTs, as was done, for example, by [11, 52].

The N = 2 SVA is most succinctly described in the N = 2 superspace
formalism. In this setup the space for an N = 2 supersymmetric quantum field
theory in two dimensions has coordinate Z = (z, θ+, θ−) where z is a complex
coordinate and θ± are Grassmann variables satisfying {θ+, θ−} = 0. We define
the supercurrent

J(Z) = −2J(z) +
1√
2
θ+G−(z) +

1√
2
θ−G+(z) + θ−θ+T (z)

where T (z) is the Virasoro field, G±(z) are the supersymmetry generators and
J(z) is the Kac-Moody U(1) current. The superfield J(Z) has the following
operator product expansion (OPE) with itself:

J(Z1)J(Z2) =
(θ−1 − θ

−
2 )(θ+

1 − θ
+
2 )

Z1 − Z2
∂J(Z2) +

θ−1 − θ
−
2

Z1 − Z2
D−J(Z2)

− θ+
1 − θ

+
2

Z1 − Z2
D+J(Z2) +

(θ−1 − θ
−
2 )(θ+

1 − θ
+
2 )

(Z1 − Z2)2
J(Z2)

+
c/3

(Z1 − Z2)2
+ . . . .
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We define Z1−Z2 = z1−z2− 1
2 (θ+

1 θ
−
2 +θ−1 θ

+
2 ), and understand that where θ±i for

i = 1, 2 appears in the denominator, the expression defined by its (truncated)
Taylor series1. D± are covariant derivatives defined by

D+ =
∂

∂θ+
+

1
2
θ−

∂

∂z
, D− =

∂

∂θ−
+

1
2
θ+ ∂

∂z

and c ∈ C is called the central charge. This super-OPE encodes all the OPEs
of the constituent fields T (z), G±(z), J(z), which are given by:

T (z1)T (z2) =
c/2

(z1 − z2)4
+

2T (z2)
(z1 − z2)2

+
∂T (z2)

(z1 − z2)
+ . . .

= T (z2)T (z1),

T (z1)J(z2) =
J(z2)

(z1 − z2)2
+

∂J(z2)
(z1 − z2)

+ . . .

= J(z2)T (z1),

J(z1)J(z2) =
c/12

(z1 − z2)2
+ . . .

= J(z2)J(z1),

T (z1)G±(z2) =
3
2
G±(z2)

(z1 − z2)2
+
∂G±(z2)
(z1 − z2)

+ . . .

= G±(z2)T (z1),

J(z1)G±(z2) = ±1
2
G±(z2)

(z1 − z2)
+ . . .

= G±(z2)J(z1),

G+(z1)G−(z2) =
2c/3

(z1 − z2)3
+

4J(z2)
(z1 − z2)2

+
2T (z2) + 2∂J(z2)

(z1 − z2)
+ . . .

= −G−(z2)G+(z1),

G±(z1)G±(z2) = 0 + . . .

= −G±(z2)G±(z1),

(2.1)

where we have omitted regular terms2. We see that T (z) is a Virasoro field with
central charge c and conformal weight 2, J(z) is a U(1) current with conformal
weight 1, and G±(z) are (odd) supersymmetry generators with conformal weight
3
2 .

These OPEs encode a Lie superalgebra of the modes of the fields T (z), G±(z)
and J(z). To determine the mode expansion of the various fields we must
consider the different types of possible boundary conditions. Since the fields are
local objects defined on the punctured complex plane, we can consider fields to

1Since Z1 − Z2 is quadratic in the totally antisymmetric θ±i it commutes with all other
terms, so our notation is not ambiguous.

2Some authors replace J(z) with 1
2
J(z).
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live on an n-sheeted covering of the punctured complex plane. Then when z
circles around the origin the field A(z) can pick up a factor ξ ∈ C:

lim
t→1

A(e2πitz) = ξA(z)

where ξn = 1. This yields three possibilities consistent with the OPEs above:
the Neveu-Schwarz (NS) sector [50], in which all the fields are periodic

lim
t→1

A(e2πitz) = A(z), for A = T, J,G±;

the Ramond (R) sector [56], in which G±(z) are anti-periodic and the others
periodic; and the twisted (T) sector. To investigate the T sector it is convenient
to use the basis

G1(z) =
1√
2

(G+(z) +G−(z)), G2(z) =
−i√

2
(G+(z)−G−(z)),

which yields the following OPEs:

T (z1)Gj(z2) =
3
2

Gj(z2)
(z1 − z2)2

+
∂Gj(z2)
(z1 − z2)

+ . . .

= Gj(z2)T (z1),

J(z1)Gj(z2) =
∑
k=1,2

iεjk
2

Gk(z2)
(z1 − z2)

+ . . .

= Gj(z2)J(z1),

Gj(z1)Gk(z2) =
2δjkc/3

(z1 − z2)3
+

4iεjkJ(z2)
(z1 − z2)2

+
2iεjk∂J(z2) + 2δjkT (z2)

(z1 − z2)
+ . . .

(2.2)

where j, k ∈ {1, 2}, and ε is the totally antisymmetric pseudo-tensor with ε12 =
1. We then take J(z) and G2(z) to be anti-periodic and the other fields to be
periodic.3

We can now expand the fields into their Fourier modes. In every sector
we have T (z) =

∑
n∈Z z

−n−2Ln, and in both the NS and R sectors we have
J(z) =

∑
n∈Z z

−n−1Jn and

G±(z) =
∑
n∈Z̃

z−n−
3
2G±n ,

where Z̃ = Z + 1
2 in the NS sector and Z̃ = Z in the R sector. Note that the

zero mode L0 exists in every sector, and for the NS and R sectors J0 also exists.
3We could just as well have chosen G1(z) to be anti-periodic and G2(z) periodic: the two

resulting Lie algebras are isomorphic.
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We can now write out the SVA encoded by eqs. (2.1) for the NS and R sectors:

[Lm, Ln] = (m− n)Lm+n +
c
12
m(m2 − 1)δm+n,0,

[Lm, Jn] = −nJn+m,

[Jm, Jn] =
c
12
mδm+n,0,[

Ln, G
±
s

]
=
(n

2
− s
)
G±n+s,[

Jn, G
±
s

]
= ±1

2
Gn+s,{

G+
r , G

−
s

}
= 2Lr+s + 2(r − s)Jr+s +

c
3

(
r2 − 1

4

)
δr+s,0,{

G±r , G
±
s

}
= 0,

(2.3)

where n,m ∈ Z, and r, s ∈ Z + 1
2 in the NS sector and r, s ∈ Z in the R sector.

Note that the SVA contains a copy of the N = 0 Virasoro algebra at central
charge c and a copy of the U(1) Kac-Moody algebra.

In the twisted sector we write

J(z) =
∑
n∈Z

z−n−
1
2 Jn− 1

2

G1(z) =
∑
n∈Z

z−n−1G1
n− 1

2
, G2(z) =

∑
n∈Z

z−n−
3
2G2

n.

Using these Fourier mode expansions, eqs. (2.2) leads to the SVA in the twisted
sector:

[Lm, Ln] = (m− n)Lm+n +
c
12
m(m2 − 1)δm+n,0,

[Ln, Js] = −sJn+s,

[Jr, Js] =
c
12
rδr+s,0,[

Ln, G
j
p

]
=
(n

2
− p
)
Gjn+p,[

Jr, G
j
p

]
=
∑
k=1,2

iεjk
2
Gkr+p,

{
Gjp, G

k
q

}
= 2δjkLp+q + 2iεjk(p− q)Jp+q + c

(
p2 − 1

4

)
δjkδp+q,0,

where j, k ∈ {1, 2}, n,m ∈ Z, r, s ∈ Z + 1
2 and the lower indices of G1

p and G2
p

run over Z + 1
2 and Z respectively.

From now on we will only be interested in the NS and R sectors.

2.1.1 Lowest weight representations of the SVA

In this section we recall some basic results regarding representations of the SVA
in the NS and R sectors. The super Virasoro algebra in either the Neveu-
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Schwarz or Ramond sector at central charge c is the Lie superalgebra spanned
by {1, Ln, Jn, G±r | n ∈ Z, r ∈ Z̃}, where

Z̃ =

{
Z + 1

2 NS sector
Z R sector

with commutation relations given in eqs (2.3). A lowest weight representation
(LWR) of the SVA is a representation of the SVA which contains a vector v 6= 0
such that

Lnv = Jnv = G±n v = 0 ∀n > 0,
L0v = hv,

J0v = Qv,

for some h,Q ∈ C. h is called the conformal weight, Q is called the U(1) charge
and v is the lowest weight vector (LWV).

We will write SVirc for the universal enveloping algebra of the SVA at central
charge c. Then for any h,Q ∈ C the Verma module V (h,Q) over SVirc at weight
h and charge Q is defined to be the vector space quotient of SVirc by the left
ideal generated by {Ln, Jn, G±r ,1−1, L0−h1, J0−Q1|n, r > 0}.4 Then V (h,Q)
is spanned by the descendent states of the vector |h,Q〉:

L−n1 ...L−npJ−m1 ...J−mqG
+
−a1

...G+
−arG

−
−b1 ...G

−
−bs |h,Q〉, (2.4)

where ni,mi > 0, ai, bi ≥ 0. The state (2.4) has L0 and J0 eigenvalues

h+
p∑
i=1

ni +
q∑
j=1

mj +
r∑

k=1

ak +
s∑
l=1

bl, (2.5)

t+
r∑

k=1

1
2
−

s∑
l=1

1
2

= t+
r − s

2
,

respectively. We note that V (h,Q) is naturally a SVirc-module, and in fact that
any SVirc-module is a quotient of V (h,Q).

A similar situation occurs in the T sector, except that the primary fields are
labelled only by their conformal weight, since in this sector J0 does not exist.

2.2 The unitary minimal models

2.2.1 Unitary representations of the SVA

A representation H of SVirc is called unitary if H carries an inner product 〈·|·〉
with respect to which

L†n = L−n J†n = J−n G± †n = G∓−n,

4Here 1 is an element of the SVA and 1 ∈ C.
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where † is the adjoint. This is a rather strong constraint, as we shall now see.
Let v be a vector of length 1 in a unitary representation H of SVirc in the

R sector with conformal weight h. Then using unitarity,

0 ≤ ‖G+
0 v‖2 + ‖G−0 v‖2 = 〈v|{G+

0 , G
−
0 }|v〉

= 〈v|
(

2L0 −
c
12

)
|v〉 = 2h− c

12
.

Clearly then h ≥ c
24 . If h = c

24 then v is a primary state, since otherwise
applying Ln, Jn or G±n with n > 0 would decrease the conformal weight below
c
24 . Further, we see that G±0 v = 0. Such a state is called a Ramond ground
state.

If v is a primary state with h > c
24 then we have a pair of highest weight

states |h,Q+〉, |h,Q−〉, degenerate with respect to L0, satisfying

G+
0 |h,Q+〉 = 0, G−0 |h,Q+〉 ∝ |h,Q−〉,

G+
0 |h,Q−〉 ∝ |h,Q+〉, G−0 |h,Q−〉 = 0

where Q+ − Q− = 1
2 . So, generically, an irreducible representation HR of the

Ramond sector of SVirc contains two highest weight states, |h,Q+〉 and |h,Q−〉,
either of which generates H as a SVirc-module. In what follows, we will pick a
preferred highest weight state and label the representation HR,∓ accordingly.

2.2.2 Classification of irreducible unitary representations
of SVA

In reference [4], it was shown that unitary N = 2 superconformal models with
central charge c < 3 can only take a discrete set of central charges

c =
3k
k
, k ∈ Z, (2.6)

where the integer k is called the level and we have written k := k + 2. Fur-
thermore, it was shown that for a fixed central charge c, there are precisely
1
2 (k+ 1)(k+ 2) inequivalent unitary irreducible lowest weight representations in
both the NS and R sectors.

In the NS sector we have pre-Hilbert spaces HNS
j1,j2

whose lowest weight state
has lowest weight and U(1) charge5

hj1,j2 =
4j1j2 − 1

4k

Qj1,j2 =
j1 − j2

2k

for (j1, j2) ∈ {(j1, j2) ∈ Z + 1
2 | 0 < j1, j2, j1 + j2 ≤ k + 1}.

5Note that a factor of 2 arises in the denominator of the charge Q since, in our notation,
relative charge takes half integer values, as opposed to the convention of integer relative charge
assumed in e.g. [4] and much of the modern literature.
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In the R sector we have pre-Hilbert spaces HR,±
j1,j2

, where we label by HR,±

the space with lowest weight vector |h,Q∓〉. The lowest weight state has lowest
weight and U(1) charge

hj1,j2 =
k + 8j1j2

8k

Qj1,j2 = ±
(
j1 − j2

2k
− 1

4

)
respectively, for (j1, j2) ∈ {(j1, j2) ∈ Z | 0 ≤ j1 − 1, j2, j1 + j2 ≤ k + 1}.6

2.2.3 Characters of representations

Define the character ch(X)
j1,j2

of the pre-Hilbert space HX
j1,j2

by ch(X)
j1,j2

(τ, z) :=
TrHXj1,j2

(
qL0− c

24 yJ0
)
, where X ∈ {NS,R±}, q = exp(2πiτ), y = exp(2πiz).

Here (τ, z) ∈ H × C where H is the upper-half complex plane. One can think
of the characters either as formal power series in q, y

1
2 and y−

1
2 or as functions

of (τ, z) ∈ H × C. The first interpretation is useful since the coefficient dn,m in
the sum ch(τ, z) = qh−

c
24 yQ

∑
n,m dn,mq

nym gives the dimension of the space of
simultaneous L0, J0 eigenstates with conformal weight n+h and charge m+Q.
The second interpretation gives functions which behave well under modular
transformations as we will see later. The characters were calculated explicitly
by [47, 15, 44].7

A useful change of variables is given by l = j1 +j2−1, m = j1−j2 in the NS
sector and by l = j1 +j2−1, m = ±(j1−j2−1) in the R sector. Thus, labelling
the NS sector by λ = 0 and the R± sector by λ = ∓ 1

2 , we have pre-Hilbert
spaces of states H(λ)

l,m indexed by

Pk := {(l,m) | l = 0, ..., k; m = −l, ..., l; l +m ≡ 0 (mod 2)}

with

h
(λ)
l,m =

l(l + 2)
4k

+
λ2

2
− (m− 2λ)2

4k
(2.7)

Q
(λ)
l,m ≡

m+ kλ

2k
(mod 1) (2.8)

as expected from the coset construction [34] based on
(
ŝu(2)k ⊕ û(1)2

)
/û(1)k

given in [10].

6The − 1
4

term arising in our expression for Q above is absent in the paper of [4], since

they define the charge to be the average of the charges Q++Q−

2
.

7The embedding diagrams conjectured in [47, 15, 44] were false. Dörrzapf [16] derived
the correct embedding pattern and showed that the characters derived in [47, 15, 44] were
nevertheless correct.
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In this more convenient notation, Ravanini and Yang [57] found an elegant
expression for the characters, based on the parafermion construction of the
N = 2 minimal theories ([69, 55] and see also section 3.6.3):

ch(k,λ)
l,m (τ, z) =

k∑
m′=−k+1

c
(k)
l,m′(τ)Θm′k−mk+2λk,kk

(
τ

2
,
kz

2
, 0
)
,

where k = k + 2, c(k)
l,m are the ŝu(2)k string functions [41] and Θa,b is the theta

function given by8

Θa,b(τ, z, u) = exp(−2πiu)
∑

n∈Z+a/2b

qbn
2
yn.

The following symmetry properties are well known:

c
(k)
l,m = c

(k)
l,m+2k = c

(k)
l,−m = c

(k)
k−l,k−m,

c
(k)
l,m = 0 unless l +m ≡ 0 (mod 2),

Θa,b = Θa+2nb,b ∀n ∈ Z.

They imply the following symmetry properties of the characters:

ch(k,λ)

l,m+2nk
= ch(k,λ)

l,m ∀n ∈ Z,

ch(k,λ)

k−l,m+k
= ch(k,λ)

l,m ,

ch(k,λ)
l,−m(τ, z) = ch(k,−λ)

l,m (τ,−z).

Gepner [30] introduces what Gannon calls ‘half-characters’ χ(b)
a,c for each

triple (a, b, c) ∈ {0, ..., k} × Z4 × Z2k with a + b + c ≡ 0 (mod 2). They are
given by

χ(b)
a,c(τ, z) =

∑
j∈Zk

c
(k)
a,c+4j−b(τ)Θ2c+(4j−b)k,2kk (τ, kz, 0) . (2.9)

χ
(b)
a,c is invariant under the transformation (a, b, c)→ (k−a, b+2, c+k). We can

mod out by this symmetry and, after choosing a realisation of the R sector, we
can assume that the characters are indexed by (a, c) ∈ Qk := {0, ..., k} × Z2k,
by setting b = [a+ c]. Here we have defined [x] to be 0 when x is even, and ±1
when x is odd, where the sign is fixed by the choice of R±. Then [a + c] = 0
labels the NS sector and [a+ c] = ±1 labels the R± sector. We will often leave
away the b index for notational simplicity.

We have the following relationship between the ch(k,λ)
l,m and the χa,c:

χa,c(τ, z) + χk−a,c+k(τ, z) = ch(k,λ)
l,m (τ, z) (2.10)

8Once again a factor of two has appeared to bring the relative charge to half-integer values;
and our definition of the theta function, following Gepner [30], differs from that of [57] by a
factor of b in the y exponent.
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= TrH(λ)
l,m

(
qL0− c

24 yJ0
)
,

χa,c(τ, z)− χk−a,c+k(τ, z) = c̃h
(k,λ)

l,m (τ, z) (2.11)

:= exp
(
∓2πiQ(λ)

l,m

)
ch(k,λ)
l,m (τ, z ± 1)

= TrH(λ)
l,m

(
(−1)2J0−2Q

(λ)
l,m qL0− c

24 yJ0

)
.

where a = l, b = [a + c] = −2λ, c = m − 2λ.9 These relations hold true for
(l,m) ∈ Pk and λ ∈ {0,± 1

2}; or equivalently for (a, c) ∈ P ′k where

P ′k := {(a, c) | a = 0, . . . , k, |c− [a+ c]| ≤ a}.

It is convenient to relabel the pre-Hilbert space and the conformal weight and
charge using a = l, b = [a + c] = −2λ, c = m − 2λ. Then we see from (2.7)
and (2.8) that the LWR Hac has conformal weight and charge given by

hac =
a(a+ 2)− c2

4k
+

[a+ c]2

8
, (2.12)

Qac =
c

2k
− [a+ c]

4
(2.13)

for (a, c) ∈ P ′k. Thus we can read off

χa,c(τ, z) = TrHa,c

(
1
2
(
1 + (−1)2J0−2Qa,c

)
qL0− c

24 yJ0

)
, (2.14)

χk−a,c+k(τ, z) = TrHa,c

(
1
2
(
1− (−1)2J0−2Qa,c

)
qL0− c

24 yJ0

)
, (2.15)

for (a, c) ∈ P ′k. Writing j for the current j ·(a, c) = (k−a, c+k) (see section 2.4),
we have Qk = P ′k ∪ j · P ′k. Thus every χac is characterised by equations (2.14)
and (2.15) as the trace of a certain projection operator over a representation of
the SVA. We recognise (−1)2(J0−Qac) as the chiral world-sheet fermion operator.
It is well-defined since J0 has charge Qac on the lowest weight state |a, c〉 of Hac,
and since the charge of a descendent state differs from Qac by a half-integer or
an integer. The chiral world-sheet fermion operator commutes with the modes
Ln, Jn and anti-commutes with the modes G±r , so 1

2 (1+(−1)2(J0−Qac)) projects
to those states created from the lowest weight state |hac, Qac〉 by the application
of an even number of fermionic modes G±r , i.e. states of the form

L−n1 . . . L−nαJ−m1 . . . J−mβG
+
−l1 . . . G

+
−lγG

−
−k1 . . . G

−
kδ
|h,Q〉

for which γ + δ is even. Similarly 1
2 (1− (−1)2(J0−Qac)) projects to those states

with γ + δ odd.
The notation χk−a,c+k is natural, since the state(s) with the lowest weight af-

ter projection have weight hk−a,c+k mod 1 and charge Qk−a,c+k mod 1 where
we have extended the definition of h and Q in equations (2.12) and (2.13) to
the indexing set Qk.

9The central charge c should not be confused with the label c.
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2.2.4 Modular invariance

We now investigate the modular properties of the characters. The modular
group SL(2,Z) acts faithfully on H × C × C where, as before, H is the upper-
half complex plane. Its action is given by(

a b
c d

)
· (τ, z, u) =

(
aτ + b

cτ + d
,

z

cτ + d
, u+

xcz2

cτ + d

)
where x is some fixed complex number. Note that the action descends to the
usual PSL(2,Z) action on H. SL(2,Z) now has a natural action on the theta
functions: we find that

T · θa,b(τ, z, u) =
(

1 1
0 1

)
· θa,b(τ, z, u)

= θa,b(τ + 1, z, u)

= exp
(

2πia
4b

)
θa,b(τ, z, u),

S · θa,b(τ, z, u) =
(

0 −1
1 0

)
· θa,b(τ, z, u)

= θa,b

(
−1
τ
,
z

τ
, u+

z2

4bτ

)
=
(
−iτ
2b

) 1
2 ∑
a′∈Z2b

exp
(
−2πiaa′

2b

)
θa′,b(τ, z, u)

where the action of S is calculated using Poisson resummation.10 Similarly
SL(2,Z) acts on the string functions by [41]

T · c(k)
l,m(τ) = c

(k)
l,m(τ + 1)

= exp
(

2πi
(
l(l + 2)

4k
− m2

4k
− c

24

))
c
(k)
l,m(τ),

S · c(k)
l,m(τ) = c

(k)
l,m

(
−1
τ

)
= (−iτ)−

1
2

k∑
l′=0

∑
m′∈Z2k

S
ŝu(2)k
l,l′

(
S
du(1)k
m,m′

)∗
c
(k)
l′,m′(τ)

where the S matrices are given by

S
ŝu(2)k
l,l′ =

√
2
k

sin
(
π(l + 1)(l′ + 1)

k

)
, (2.16)

S
du(1)k
m,m′ =

√
1
2k

exp
(
−πimm

′

k

)
. (2.17)

10We have fixed x here to be 1
4b
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We can read off the action of T on the character χa,c directly from (2.14)
and (2.15):

T · χa,c(τ, z) = χa,c(τ + 1, z)

= exp
(

2πi
(
ha,c −

c
24

))
χa,c(τ, z)

=
∑

(a′,c′)∈Qk

T
ŝu(2)k
a,a′ T

du(1)2
[a+c],[a′+c′]

(
T
du(1)k
c,c′

)∗
χa′,c′(τ, z).

(2.18)

As before, the ha,c are defined for all (a, c) ∈ Qk by equation (2.12). The T -
matrices are those of the ŝu(2) and û(1) characters arising in the Sugawara [60]
construction. They are given by

T
ŝu(2)k
a,a′ = δa,a′ exp

(
2πi

(
(a+ 1)2

4k
− 1

8

))
T
du(1)l
c,c′ = δc,c′ exp

(
2πi

(
c2

4l
− 1

24

))
.

(2.19)

Kac and Wakimoto calculated the S-matrix in [42]. It reads

S · χa,c(τ, z) := e−
iπcz2

3τ χa,c

(
−1
τ
,
z

τ

)
=

∑
(a′,c′)∈Qk

2S ŝu(2)k
a,a′ S

du(1)2
[a+c],[a′+c′]

(
S
du(1)k
c,c′

)∗
χa′,c′(τ, z).

(2.20)

2.3 Structure of the physical invariants

2.3.1 Notation

We consider Z2p to have underlying set {−p+ 1, . . . , p}. Recall that we defined

Pk := {(l,m) ∈ {0, . . . , k} × Z2k | |m| ≤ l, l +m ≡ 0 mod 2},
P ′k := {(a, c) ∈ {0, . . . , k} × Z2k | |c− [a+ c]| ≤ a, },
Qk := {0, . . . , k} × Z2k,

where, throughout the paper, k = k + 2 and we are using the convention that
[x] = 0 when x is even and [x] = ±1 when x is odd, where the sign depends on
whether we realise the Ramond sector as R+ or R−.

We now choose for once and for all to realise the Ramond sector via R+.
In the notation of the last section, this is equivalent to b = [a + c] = −2λ = 1.
Then each (l,m) ∈ Pk labels an NS character ch0

lm and a Ramond(+) character

ch−
1
2

lm . The (a, c) ∈ Qk label the half-characters χac, and [a + c] = 0 or 1 label
the NS and R+ sectors, respectively.

The conformal weight and charge are given in (2.12) and (2.13). These
equations actually define h,Q for all (a, c) ∈ Qk.
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2.3.2 Partition functions and physical invariants

A N = 2 SCFT at central charge c = 3k
k

is, among other things, a representation
of the direct sum of two commuting copies of the N = 2 SVA. We are interested
in minimal theories, in which case this representation decomposes into a finite
number of irreducible representations Hλ

lm ⊗ Hλ′

l′m′ , (lm), (l′m′) ∈ Pk, λ, λ′ ∈
{0,− 1

2}, which we saw in section 2.2.2 were classified by [4]. So the full pre-
Hilbert space is

H =
⊕

(l,m)∈Pk
(l′,m′)∈Pk
λ,λ′∈{0,− 1

2}

Mλ,λ′

l,m; l′,m′H
λ
lm ⊗Hλ′

l′m′ (2.21)

where the non-negative integer matrix Mλ,λ′

l,m; l′,m′ counts the multiplicity of the

irreducible representation Hλ
lm ⊗ Hλ′

l′m′ . One of the axioms of an SCFT is that
the vacuum is unique; that is, the vacuum representation appears precisely once:

M0,0
0,0; 0,0 = 1. (2.22)

We will define the full partition function Z(τ, z) of a SCFT H to be the trace
over H of qL0− c

24 yJ0qL0− c
24 yJ0 where, as before, q = e2πiτ and y = e2πiz, c is

the central charge and L0, J0 and L0, J0 span the Cartan subalgebra of the left-
and right-handed copies of the SVA, respectively (see equations (2.3)). Thus we
have

Z(τ, z) =
∑

(l,m)∈Pk
(l′,m′)∈Pk
λ,λ′∈{0,− 1

2}

Mλ,λ′

l,m; l′,m′ch
λ
lm(τ, z)chλ

′

l′m′(τ, z)
∗

where, as in section 2.2.3, chλlm(τ, z) are the characters of the representation
Hλ
lm.

In N = 0 CFTs, the characters of the irreducible representations are required
to transform into one another linearly under the action of SL2(Z). But in the
superconformal case the situation is slightly more subtle; here, in order to build
an SL2(Z) module from the characters chλlm we are forced to consider also the

‘twisted’ characters c̃h
λ

lm defined in equation (2.11).11

As we can see from equations (2.10) and (2.11), the basis {chλlm, c̃h
λ

lm | (lm) ∈
Pk, λ ∈ {0,− 1

2}} is equivalent to the basis of half characters {χac | (ac) ∈ Qk}.
We shall work in this latter basis from now on, for several reasons. Firstly
this basis diagonalises the T -matrix, as seen in equation (2.18); secondly, if we
consider the χac(τ, z) as a formal power series in q and y multiplied by a factor
qh−

c
24 yQ, the term qnym has a non-negative integer coefficient, which we can

11The S and T transformations of the characters and twisted characters can easily be
deduced from the those of the half-characters in equations (2.20) and (2.18).
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interpret as the dimension of the space of states at level n and relative charge
m. Thirdly, the action of the simple currents on the half-characters is more
transparent.

We can now state the condition of modular invariance: a SCFT H is required
to have a bosonic partition function

Z(τ, z) =
∑

(ac)∈Qk
(a′c′)∈Qk

Ma,c; a′,c′χac(τ, z)χa′c′(τ, z)∗ (2.23)

which is modular invariant ; that is, Z is invariant under the natural action
of SL2(Z), defined by the action of S and T on χac, which was described in
section 2.2.4. Using the fact that the χac are linearly independent, this is
equivalent to the condition that

SMS† = M, (2.24)

TMT † = M ; (2.25)

or, using the unitarity of S and T , equivalent to SM = MS and TM = MT . A
non-negative integer matrix M with M0,0; 0,0 = 1 and satisfying equations (2.24)
and (2.25) above is called a physical invariant.

We have not yet spelled out exactly how one should associate a modular
partition function (2.23) to a given representation (2.21). While it is clear from
equations (2.14) and (2.15) that we should project out half the states in each
family, it is not clear which half, (except in the vacuum representation when
we know that the vacuum state must be present). In practise one starts by
finding a modular invariant (bosonic) partition function and reconstructing the
full Hilbert space. One then reads off the correct projection a posteriori.12

We will find a nice characterisation of the projection to the bosonic states
in section 3.5 for some class of minimal models in terms even sublattices of
the charge lattice, but for now we will illustrate what happens for the class of
modular invariant partition functions which count states only in the NS-NS and
R-R sectors.

We note here one immediate consequence of modular invariance of a physical
invariant: using equation (2.18), we see that T -invariance is equivalent to

Ma,c; a′,c′ 6= 0 ⇒ hac − ha′c′ ∈ Z. (2.26)

12One might have expected that χac should count bosons and χk−a,c+k should count

fermions for (ac) ∈ Pk, and that the projection should be given by keeping only boson×boson
and fermion×fermion. In fact this is true only for the A-model. One reason for this is that
the choice of χac over χk−a,c+k in the R sector is completely arbitrary, as it depends upon

choosing your favourite of the two possible highest weight states. Another reason is that, as
we shall see in section 4, we shall perform orbifolds by the fermion number operator (−1)F ,
which mixes up our notion of bosons and fermions.
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2.3.3 A simplification

We consider the case in which there are no states in the NS-R or R-NS sectors;
that is,

Ma,c; a′,c′ 6= 0⇒ a+ c+ a′ + c′ ≡ 0 mod 2. (2.27)

We begin by proving a lemma regarding the restrictions placed on a physical
invariant by the exclusion of NS-R and R-NS sectors. Denote by j : Qk →
Qk the bijection (a, c) 7→ (k − a, c + k), where, as always, k = k + 2. One
checks directly using the S-matrix, or by skipping ahead to equation (2.39),
that Sj(ac),a′c′ = (−1)a

′+c′Sac; a′c′ . This nice interaction of j with the S-matrix
is typical of simple currents, of which j is an example. We shall see many more
of these in section 2.4.3.

Lemma 2.3.1. Let Z =
∑
a,c,a′,c′Mac; a′c′χacχ

∗
a′c′ be a physical invariant and

suppose that there are no NS-R or R-NS states present, i.e. that (2.27) holds.
Then Mj(a,c); j(a′,c′) = Mac; a′c′ for all (ac), (a′c′) ∈ Qk.

Proof. Using equation (2.24) we have

Mj(a,c); j(a′,c′) = (SMS†)j(a,c); j(a′,c′)

=
∑

(st)∈Qk
(uv)∈Qk

Sj(a,c); stMst;uvS
†
uv; j(a′,c′)

which, by equation (2.39),

=
∑

(st)∈Qk
(uv)∈Qk

(−1)s+t+u+vSac; stMst;uvS
†
uv; a′c′

=
∑

(st)∈Qk
(uv)∈Qk

Sac; stMst;uvS
†
uv; a′c′

= (SMS†)ac; a′c′

= Mac; a′c′ ,

where we used equations (2.27) and (2.24) again.

Consider the most general bosonic partition function Z(τ, z) obeying equa-
tion (2.27). We will use lemma 2.3.1 and the identities (2.10) and (2.11) to ex-
press it in terms of the characters chlm(τ, z). First recall from section 2.3.1 that
the NS sector is labelled by indices NSk := Pk ∪ j ·Pk = {(ac) ∈ Qk | a+ c ≡ 0}.
Thus Z restricted to the NS-NS sector reads

ZNS =
∑

(ac),(a′c′)∈Qk
a+c≡a′+c′≡0

Ma,c; a′,c′χacχ
∗
a′c′
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which, by lemma 2.3.1,

=
∑

(ac)∈Pk
(a′c′)∈Pk

Ma,c; a′,c′

(
χacχ

∗
a′c′ + χj(ac)χ

∗
j(a′c′)

)

+
∑

(ac)∈Pk
(a′c′)∈Pk

Mj(a,c); a′,c′

(
χj(ac)χ

∗
a′c′ + χacχ

∗
j(a′c′)

)

=
∑

(lm)∈Pk
(l′m′)∈Pk

Ml,m; l′,m′
1
2

(
ch0
lmch0 ∗

l′m′ + c̃h
0

lmc̃h
0 ∗
l′m′

)

+
∑

(lm)∈Pk
(l′m′)∈Pk

Mj(l,m); l′,m′
1
2

(
ch0
lmch0 ∗

l′m′ − c̃h
0

lmc̃h
0 ∗
l′m′

)
(2.28)

where in the last line we used equations (2.10) and (2.11). Now equations (2.12)
and (2.26) show that either Ml,m; l′,m′ or Mj(l,m); l′,m′ is zero for (l,m) and
(l′,m′) in the NS sector, since hj(l,m) ≡ hl,m + 1

2 mod 1. Combining this with

the interpretation of ch0
lm and c̃h

0

lm as traces over the pre-Hilbert space H0
lm

given in equations (2.10) and (2.11), we can read off the full Hilbert space of
the NS-NS sector:

HNS =
⊕

(lm)∈Pk
(l′m′)∈Pk

(
Ml,m; l′,m′ +Mj(l,m); l′,m′

)
H0
l,m ⊗H0

l′,m′ . (2.29)

We claim the projection to the subspace with modular invariant partition func-
tion is

Pb =
1
2

(
1 + (−1)2(L0−L0)

)
. (2.30)

We have already seen this is well-defined on the primary states that can appear
in the full Hilbert space of the NS-NS sector. It remains to check that Pb is
well-defined on descendent states. As we saw in equation (2.5), a descendent
state of the form (2.4) is an eigenvector of the operator L0 − h with eigenvalue
in 1

2Z, where h is the conformal weight of the primary state. The analogue
statement is true for right-hand descendent states. Since h − h ∈ 1

2Z for any
primary state in HNS, the operator (−1)2(L0−L0) is well-defined on HNS. In fact
Pb is none other than the projection to the world-sheet bosonic states: it kills
all states with half-integer spin and keeps those with integer spin.

To summarise: the NS-NS part of the modular invariant bosonic partition
function is related to the bosonic sector of the NS-NS part of the full partition
function by:

ZNS = Pb

 ∑
(lm)∈Pk

(l′m′)∈Pk

NNS
l,m;l′,m′ch

0
lmch0 ∗

l′m′
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where the projection is understood to be inserted into the trace in the definition
of the character ch, and where

NNS
l,m;l′,m′ = Ml,m; l′,m′ +Mj(l,m); l′,m′ .

The Ramond-Ramond part of the modular invariant partition function is

ZR =
∑

(lm)∈Pk
(l′m′)∈Pk

Ml,m+1; l′,m′+1
1
2

(
ch−

1
2

lm ch−
1
2 ∗

l′m′ + c̃h
− 1

2
lm c̃h

− 1
2 ∗

l′m′

)

+
∑

(lm)∈Pk
(l′m′)∈Pk

Mj(l,m+1); l′,m′+1
1
2

(
ch−

1
2

lm ch−
1
2 ∗

l′m′ − c̃h
− 1

2
lm c̃h

− 1
2 ∗

l′m′

)
,

so the full Hilbert space of the R-R sector is

HR =
⊕

(lm)∈Pk
(l′m′)∈Pk

NR
l,m; l′,m′H

− 1
2

l,mH−
1
2

l′,m′ (2.31)

where

NR
l,m; l′,m′ = Ml,m+1; l′,m′+1 +Mj(l,m+1); l′,m′+1. (2.32)

We will see in section 2.5.4 that there are two modular invariant subspaces
associated to the R-R sector of the full Hilbert space of an N = 2 SCFT. In
general we do know how to write the projections in a convenient form as we
could for the NS-NS sector (2.30), but we give such an expression for the case
when the level k is odd in section 3.5.

2.4 Simple currents and fusion rules

2.4.1 Definition of simple currents

In the study of conformal field theories, a rich symmetry structure arises out of
the so-called simple currents [40, 59, 58]. A simple current is a primary field
which upon fusion with any other field yields precisely one primary field (plus
its descendants). The simple currents can therefore be found from the fusion
coefficients Nα

a,a′ defined by

[φl]× [φl′ ] =
∑
α∈P

Nα
l,l′ [φα]

where φl are primary fields labelled by l ∈ P . [φl] represents a sum over the
primary field φl and its descendants. Nα

l,l′ counts the multiplicity of the field
φα appearing in the OPE of φl and φl′ .

19



2.4.2 The Verlinde formula and fusion rules

The Verlinde formula [63] gives a surprising and elegant expression for fusion
rules in terms of the S-matrix for (bosonic) CFTs. Inspired by this we define

Nαγ
ac; a′c′ :=

∑
(d,f)∈Qk

Sac;dfSa′c′;dfS
∗
αγ;df

S00;df
. (2.33)

Lemma 2.4.1. Fix (ac), (a′c′), (α, γ) ∈ Qk. We have

Nαγ
ac; a′c′ =


(
N ŝu(2)k

)α
a,a′

(
N
du(1)k

)γ
c,c′

, if [a+ c][a′ + c′] = 0(
N ŝu(2)k

)k−α
a,a′

(
N
du(1)k

)γ+k

c,c′
, if [a+ c][a′ + c′] = 1


Here N ŝu(2)k and Ndu(1)k are the fusion coefficients for the WZW models [66,

67] obtained from ŝu(2) at level k [32] and û(1) at level k respectively. They
read(
N ŝu(2)k

)l
a,a′

= δ(|a− a′| ≤ l ≤ min(a+ a′, 2k − a− a′)) δ(a+ a′ ≡ l mod 2)(
N
du(1)k

)n
c,c′

= δ(c+ c′ ≡ n mod 2k),

where δ(condition) = 1 if and only if ‘condition’ is satisfied. In particular, we
see that Nα,γ

ac; a′c′ is only non-zero if a+ c+ a′+ c′+α+ γ ≡ 0 mod 2. If we can
interpret the N as fusion coefficients of the minimal models then we obtain the
following selection rules for the NS and R sectors:

NS ×NS ∼ NS NS ×R ∼ R
R×NS ∼ R R×R ∼ NS.

Proof. It is possible to expand the expression (2.33) into a sum of products of
sines and exponentials which can be simplified at great length and tedium. We
present here a very simple proof using simple currents of the S-matrices of the
WZW models obtained from ŝu(2) and û(1). Simple currents are explained in
detail in the following section, but for now we will just use the fact that

Sk−a,a′ = (−1)a
′
Sa,a′ , a, a′ ∈ {0, . . . , k}

Sc+k,c′ = (−1)c
′
Sc,c′ , c, c′ ∈ Z2k,

(2.34)

where we have written S for the ŝu(2) S-matrix at level k and S for the û(1)
S-matrix at level 2k. This is easily checked from equations (2.16) and (2.17).
Substituting in the definitions we find

Nαγ
ac; a′c′ =

∑
(d,f)∈Qk

Sa,dSa′,dS
∗
α,d

S0,d
e−

πi
2 ([a+c]+[a′+c′]−[α+γ])

Sc,fSc′,fS
∗
γ,f

S0,f

.
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First suppose that [a + c] + [a′ + c′] − [α + γ] = 0. This corresponds to fusion
NS ×NS ∼ NS, NS ×R ∼ R or R×NS ∼ R. Then

Nαγ
ac; a′c′ =

k∑
d=0

Sa,dSa′,dS
∗
α,d

S0,d

∑
f∈Z2k

Sc,fSc′,fS
∗
γ,f

S0,f

=
(
N ŝu(2)k

)α
a,a′

(
N
du(1)k

)γ
c,c′

.

Now suppose that [a+ c] + [a′+ c′]− [α+γ] = 2, corresponding to fusion R×R.
Then

Nαγ
ac; a′c′ =

∑
(df)∈Qk

Sa,dSa′,dS
∗
α,d

S0,d
(−1)d+f

Sc,fSc′,fS
∗
γ,f

S0,f

=
∑

(df)∈Qk

Sa,dSa′,dS
∗
k−α,d

S0,d

∑
f∈Z2k

Sc,fSc′,fS
∗
γ+k,f

S0,f

=
(
N ŝu(2)k

)k−α
a,a′

(
N
du(1)k

)γ+k

c,c′

where we used equations (2.34) in the middle step. Finally suppose that [a +
c] + [a′ + c′] − [α + γ] is odd. Then using equations (2.34) again, we see that
under (d, f) 7→ (k − d, f + k) the summand

Sa,dSa′,dS
∗
α,d

S0,d
e−

πi
2 ([a+c]+[a′+c′]−[α+γ])

Sc,fSc′,fS
∗
γ,f

S0,f

picks up a factor of (−1)a+a′+α+c+c′+γ = −1, and thus the sum vanishes.

We want to interpret N as the set of fusion coefficients for the N = 2 minimal
models. Recall that the fusion in a (bosonic) CFT describes how the different
conformal families interact under the operator product expansion (OPE). Let
φa(z), φb(z) be primary fields. Then the fusion of φa(z) with φb(w) is given by

φa(z)φb(w) =
∑
z∈P

Ccab(z − w)hc−ha−hb
[
φc(w) +

∑
n>0

(z − w)nφ(n)
c (w)

]
(2.35)

where Ccab ∈ C are the OPE coefficients, hx ∈ C is the conformal weight of the
primary field φx and P labels the set of primary fields. φ(n)

c (w) are descendent
fields of φc(w), i.e. those built from linear combinations of fields of the form
(L−k1 . . . L−knφ)(w) for positive ki.

The space of all descendent fields of a primary field φc(w) is the conformal
family [φc] of φc(w). Under the state-field correspondence, the fields in a con-
formal family correspond precisely to vectors in the irreducible LWR built on
the LWV |φc〉. In equation (2.35) it is understood that more than one copy of
each conformal family can appear in the sum on the right-hand side.
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We record which conformal families appear in the fusion of φa(z) and φb(w)
using the notation

[φa]× [φb] ∼
∑
c∈P

N c
a,b [φc]

where N c
a,b ∈ Z counts the multiplicity of the family [φc] appearing on the right

hand side. The integers N c
a,b are called the fusion rules of the theory.

In the N = 2 case, the fusion between the super primary fields is a priori
again

φa(z)φb(w) =
∑
z∈P

Ccab(z − w)hc−ha−hb
[
φc(w) +

∑
n>0

(z − w)nφ(n)
c (w)

]
(2.36)

where the φc(w) are N = 2 descendent states (so in particular in the NS sector,
the sum also runs over positive half integers). The fusion rules a priori are

[φa]× [φb] ∼
∑
c∈P

N c
a,b [φc].

We can view the OPE as a short-range expansion for fields inside a compatible
system of n-point functions. Then J0 invariance of the n-point functions con-
strains the form of the OPE in equation (2.36). It implies that the U(1) charges
of all the fields φ(n)

c (w) must be equal. This allows us to refine the fusion rules.
Descendants of φc(w) are of the form

(L−n1 . . . L−nαJ−m1 . . . J−mβG
+
−l1 . . . G

+
−lγG

−
−k1 . . . G

−
kδ
φc)(w),

which has U(1) charge Qc + 1
2 (γ − δ), where Qc is the U(1) charge of φc(w).

We split the superconformal family [φc] into two subfamilies: [c,+] containing
those descendants with γ − δ even and [c,−] containing those descendants with
γ − δ odd. We can then capture the interactions of the different even and odd
superconformal ‘half-families’ in the super fusion rules

[a, εa]× [b, εb] ∼
∑

(c,εc)∈P×{±}

N
(c,εc)
(a,εa),(b,εb)

[c, εc].

We now specialise to the case of the N = 2 minimal models. Recall that
the super-primary fields of the N = 2 minimal models are labelled by the
(a, c) ∈ Qk = {0, . . . , k} × Z2k that satisfy |c − [a + c]| ≤ a. According to the
discussion after equation (2.15) we see that for the N = 2 minimal models, fields
in [(a, c),+] with |c−[a+c]| ≤ a correspond under the state-field correspondence
precisely to states counted by the character χac, and fields in [(a, c),−] to states
counted by χk−a,c+k. We will henceforth use the notation [(a, c)] with (a, c) ∈
Qk to label the even and odd superconformal families for the N = 2 minimal
models.

The integers Nαγ
ac;a′c′ calculated in lemma 2.4.1 are the natural candidates

for the super fusion rules. This result is confirmed by [48, 49] in the NS×NS and
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R×R sectors, both through the Coulomb gas formalism and through the explicit
construction of the unitary N = 2 minimal models via the parafermion-boson
construction [55] (also see sections 3.6 and 3.7.1).

We can also read off the usual fusion between N = 2 primary fields by simply
forgetting the distinction between [ac] and [k − a, c+ k]. Then the fusion rules
for the primary fields read

N̂α,γ
ac;a′c′ = Nαγ

ac;a′c′ +Nk−α,γ+k
ac;a′c′

=
(
N ŝu(2)k

)α
a,a′

(
N
du(1)k

)γ
c,c′

+
(
N ŝu(2)k

)k−α
a,a′

(
N
du(1)k

)γ+k

c,c′
.

It is precisely this quantity that Wakimoto calculates in [64]13. We summarise
this section in the following theorem:

Theorem 2.4.2. The fusion rules for the N = 2 minimal models are given by

Nαγ
ac; a′c′ =

∑
(d,f)∈Qk

Sac;dfSa′c′;dfS
∗
αγ;df

S00;df

=


(
N ŝu(2)k

)α
a,a′

(
N
du(1)k

)γ
c,c′

, if [a+ c][a′ + c′] = 0(
N ŝu(2)k

)k−α
a,a′

(
N
du(1)k

)γ+k

c,c′
, if [a+ c][a′ + c′] = 1


for (ac), (a′c′), (αγ) ∈ Qk,

where we label fields in the superconformal family of the super-primary φac(z)
with the same U(1) charge as φac(z) by [ac], and fields whose U(1) charge differs
by a half integer by [k − a, c+ k] for |c− [a+ c]| ≤ a.

If we simply wish to label fields in the same superconformal family as φac(z)
by [ac] then the fusion rules are

N̂α,γ
ac;a′c′ = Nαγ

ac;a′c′ +Nk−α,γ+k
ac;a′c′

=
(
N ŝu(2)k

)α
a,a′

(
N
du(1)k

)γ
c,c′

+
(
N ŝu(2)k

)k−α
a,a′

(
N
du(1)k

)γ+k

c,c′

for (ac), (a′c′), (αγ) ∈ {(ln) ∈ Qk | |n− [l + n]| ≤ l}.

2.4.3 Simple currents of the minimal models

From the explicit formula for the fusion rules one can read off that the simple
currents of the minimal models at level k are J = {0, k} × Z2k. Each current
acts naturally on the set of weights of the N = 2 minimal models: j maps the
weight (a, c) to the weight labelling the field which appears in the OPE of φj

and φa,c. Thus, writing J for the ŝu(2)k current J : a 7→ k − a,

(J l0, d) · (a, c) = (J l+(lk+d)(a+c)a, c+ d+ (lk + d)(a+ c)k).

13Actually there is a small error in the statement of the main theorem in [64]. On page 4,
condition F2 should include the condition m+ (m− j − k) < (m− j′ − k′) + (m− j′′ − k′′).
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We define a binary operation × on the set of currents by

((J l10, d1)× (J l10, d1)) · (a, c) := (J l10, d1) · ((J l10, d1) · (a, c)).

Then we see that

(J l10, d1)× (J l10, d1) = (J l1+l2+(l1k+d1)(l2k+d2)0,

d1 + d2 + (l1k + d1)(l2k + d2)k)
(2.37)

and that × is a closed, associative and commutative binary operator on the set
of currents J . It is easy to check that (0, 0) is an identity element and that

(J l0, d)−1 = (J l+lk+d0,−d+ (lk + d)k).

So the set of simple currents form a commutative group isomorphic to

J =

{
Z4k if k is odd
Z2 × Z2k if k is even.

The simple currents are of great use because the S-matrix behaves well under
the action of the currents on the weights. In fact

Sj·(a,c); a′,c′ = exp(2πiQj(a′, c′))Sa,c; a′,c′ (2.38)

where Q(Jl0,d)(a′, c′) = a′l
2 + c′d

2k
− [kl+d][a′+c′]

4 and we have written [b] ∈ {0, 1}
for the value of b modulo 2, as before. Qj is called the charge of the field φa,c
with respect to the current j. The charges satisfy

Qj(a, c) = hj + h(a,c) − hj·(a,c),

so Qj(a, c) is also the monodromy of φa,c with φj, as expected [59].
Note that in particular, (2.38) applied to the simple current j := (J0, k)

gives

SJa,c+k; a′,c′ = (−1)a
′+c′Sa,c; a′,c′ . (2.39)

2.4.4 Simple current invariants

It was observed [45] that in all then-known cases, almost all the rational CFTs
that can be constructed are the so-called simple current invariants [28], leaving
at worst a handful of “exceptional” models not of simple current type. By simple
current invariant we mean a CFT with partition function Z =

∑
l,l′Ml,l′χlχ

∗
l′

where χl are the characters of the representations of the W-algebra such that

Ml,l′ 6= 0 ⇒ l′ = jl for some j ∈ J

where J is the set of simple currents of the CFT. This is a strong assumption
indeed - see section 3 of [23] for a number of immediate consequences.
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If we are interested in simple current invariants, then we are only concerned
with those simple currents that could feasibly build a modular invariant par-
tition function. T -invariance implies that we should only retain those current
whose spin multiplied by their order is an even integer: this is the effective
centre, C [45]. In the case of the N = 2 minimal models:

Ck =


{(J l0, d) | l + d ≡ 0 mod 2} ∼= Z2k if k is odd,
{0, k} × {2d | d ∈ Z} ∼= Z2 × Zk if 4|k + 2,
{0, k} × Z2k

∼= Z2 × Z2k if 4|k,

which are groups under the group law inherited from (2.37).

2.5 Symmetries of the models

The rich simple current symmetries of the S and T matrices allow several ways
of constructing new physical invariants from old, which we will investigate in
this section.

2.5.1 Mirror symmetry

Define C = S2, the so-called charge conjugation matrix. We see that

Cac; a′c′ = δ(a′ = Ja+ca)δ(c′ = −c+ (a+ c)k).

C is a permutation matrix which acts on the primary fields. Mirror symmetry is
realised by acting by the charge conjugation matrix C = S2 on one of the chiral
sectors. At the level of states of the conformal field theory, mirror symmetry
acting on the left-hand representations maps states with U(1) charges (Q,Q)
to states with charges (−Q,Q). This implies that one model can be obtained
from the other by relabelling the generators of the left U(1) current and the
generators of the charge-carrying super-currents:

{Ln, Jn, G±r , Ln, Jn, G
±
r } → {Ln,−Jn, G∓r , Ln, Jn, G

±
r }.

Thus the two mirror symmetric models describe identical physics, and we would
normally consider them to be equivalent theories. However, since they give rise
to different partition functions, it will be convenient to treat them as belonging
to separate theories. The analogue is true for mirror symmetry acting on the
right-hand states. We will discuss the case when mirror symmetry acts on both
the left-hand and right-hand states in the next section.

At the level of primary fields, charge conjugation acts via

∗ : Qk → Qk : (a, c) 7→ (a, c)∗ = ja+c(a,−c).

Note that we have

S(a,c)∗; a′,c′ = Sa,c; (a′,c′)∗ = S∗a,c; a′,c′
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At the level of the (bosonic) partition function, charge conjugation on the left-
and right-handed chiral sectors is given by

Ma,c; a′,c′ 7→M(a,c)∗; a′,c′ = (CM)a,c; a′,c′ ,
Ma,c; a′,c′ 7→Ma,c; (a′,c′)∗ = (MC)a,c; a′,c′ ,

respectively. In fact CM and MC are identical, since C = S2 and S commutes
with M by definition of physical invariant.

Lemma 2.5.1. Let M be a physical invariant. Then M̂ = CM = MC is a
physical invariant.

Proof. Since C is a permutation matrix which leaves the vacuum invariant, M̂
has positive integer entries and the vacuum is unique. It is clear that S com-
mutes with M̂ , since it commutes with M and since C = S2; and T commutes
with both M and S2, and hence with M̂ .

2.5.2 Charge conjugation

We note that combining both left- and right- mirror symmetry transformations
yields the charge conjugation transformation14, which acts on charges of states
via (Q,Q) → (−Q,−Q). It follows that we obtain one model from its charge
conjugate via the transformation

{Ln, Jn, G±r , Ln, Jn, G
±
r } → {Ln,−Jn, G∓r , Ln,−Jn, G

∓
r }.

At the level of partition functions, since the charge conjugation matrix C satisfies
C2 = S4 = Id, we see that the partition functions is left invariant under the
charge conjugation transformation. We will therefore consider charge conjugate
theories to be identical.

In particular, if M is a physical invariant, then acting with mirror symmetry
on the left or the right yield identical physical invariants CM and MC belonging
to identical SCFTs. We will refer to M and CM as ‘mirror pairs’.

2.5.3 The symmetry Ma,c; a′,c′ ↔Ma,−c; a′,c′

Lemma 2.5.2. Let M be a physical invariant. Then M̂a,c; a′,c′ = Ma,−c; a′,c′ is
a physical invariant.

Proof. Since hac = ha,−c the T -invariance of M̂ follows from equation (2.25)
and the T -invariance of M . We then use the fact that Sa,−c; a′,c′ = Sa,c; a′,−c′

for all (ac), (a′c′) ∈ Qk and the S-invariance of M to show that M̂ is S-invariant:

(SM̂S†)ac; a′,c′ =
∑

(rs),(uv)∈Qk

Sac; rsMr,−s;u,vS
†
uv; a′c′

14We emphasise that acting with the charge conjugation matrix C on one chiral halve yields
the mirror symmetry transformation; acting on both halves simultaneously yields the charge
conjugation transformation.
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=
∑

(rs),(uv)∈Qk

Sa,c; r,−sMrs;uvS
†
uv; a′c′

=
∑

(rs),(uv)∈Qk

Sa,−c; r,sMrs;uvS
†
uv; a′c′

= Ma,−c; a′,c′

= M̂ac; a′c′ .

Of course this symmetry applies equally well to the right-hand side giving
us new physical invariants Ma,c; a′,−c′ and Ma,−c; a′,−c′ .

2.5.4 The symmetry Mac; a′c′ ↔Mja+c(ac); a′c′

By combining mirror symmetry with the previous construction we find the fol-
lowing new physical invariants:

M̃ac; a′c′ = Mja+c(ac); a′c′ . (2.40)

We note that M and M̃ have the same NS-NS sector content, and therefore
belong to full theories whose full NS-NS sector Hilbert spaces are identical.
Suppose for a moment that M (and therefore M̃) belong to a modular invariant
partition function of a theory with no states in the NS-R and R-NS sectors, as
in section 2.3.3. Then from equation (2.32), the R-R sector of the Hilbert spaces
of the associated full theories are also identical.

2.5.5 Transposing

Lemma 2.5.3. Let M be a physical invariant. Then MT is a physical invariant.

Proof. MT clearly has positive integer entries and a unique vacuum. Since S
and T are symmetric, it follows that MT commutes with S and T .
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Chapter 3

Classification of the
Partition Functions

3.1 Gannon’s classification

Gannon’s result [26] was to classify all the modular invariant partition functions
Z of the form (2.23) with unique vacuum. Recall that the (non-negative inte-
ger) matrix of multiplicities M of such a partition function is called a physical
invariant. We briefly describe here how this classification was achieved.

There are two key steps. The first is to observe that there is a connection
between the minimal models, which as we mentioned earlier can be constructed
via the coset representation g/h with g = ŝu(2)k ⊕ û(1)2 and h = û(1)k, and
the WZW model g ⊕ h. Gannon had already shown [27] that the physical
invariants of g/h could be obtained from the physical invariants of g ⊕ h for
various diagonal embeddings of h ⊂ g at particular levels. This phenomenon
occurs because of the similarity of the S-matrices of the two theories. In the
case of the unitary N = 2 minimal models we have seen that the S-matrix is
given by equation (2.20). The characters extend naturally to the indexing set
(a, b, c) ∈ {0, . . . , k} × Z4 × Z2k =: P ′′k if we set

χ(b)
ac := χac when b = [a+ c] ∈ {0, 1},

χ
(b+2)

k−a,c+k ≡ χ
(b)
ac ∀(a, b, c) ∈ P ′′k , (3.1)

χ(b)
ac = 0 when a+ b+ c 6≡ 0 mod 2.

With these definitions we find that the characters χ(b)
ac transform under S with S-

matrix S(k)⊗S′(2)⊗S′(k)∗. Meanwhile the WZW model ŝu(2)k⊕ û(1)2⊕ û(1)k
has characters χaχbχc with (a, b, c) ∈ P ′′k , which transform under the action of S
with S-matrix S(k)⊗S′(2)⊗S′(k). The crucial observation is that χaχbχ∗c trans-
forms under S in exactly the same way as χ(b)

ac . Thus if
∑
Ma,b,c; a′,b′,c′χ

(b)
ac χ

(b′)∗
a′c′

is a physical invariant of the coset g/h, then
∑
Ma,b,c′; a′,b′,cχaχbχcχ

∗
a′χ
∗
b′χ
∗
c′ is
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a physical invariant of the WZW model g ⊕ h (note the interchange of c and
c′). This correspondence is injective and thus every g/h physical invariant is
obtained from a g⊕h physical invariant, and the subset of g⊕h physical invari-
ants corresponding to g/h physical invariants are precisely those which respect
the symmetry in (3.1), i.e.

Mk−a,b+2,c; a′,b′,c′+k = Ma,b,c+k; k−a′,b′+2,c′ = Ma,b,c; a′,b′,c′ .

Gannon showed in Lemma 3.1 of [23] that it is enough to check this condition
when a = b = c = a′ = b′ = c′ = 0:

Mk,2,0; 0,0,k = M0,0,k; k,2,0 = M0,0,0;0,0,0 = 1. (3.2)

Thus the modular invariant partition functions of the minimal models at level
k

Z(τ, z) =
∑

(ac)∈Qk
(a′c′)∈Qk

M̃a,c; a′,c′χac(τ, z)χa′c′(τ, z)∗

are obtained by

M̃a,c; a′,c′ = Ma,[a+c],c′; a′,[a′+c′],c

where M is a physical invariant of ŝu(2)k⊕û(1)2⊕û(1)k satisfying equation (3.2),
and where, as before, [x] is 0 or 1 depending on whether x is even or odd.

The second step is to classify the physical invariants of ŝu(2)k ⊕ û(1)2 ⊕
û(1)k subject to equation (3.2). The crucial step is to note that the Verlinde
formula [63] implies that there is a Galois action on the S-matrix:

σ · Sa,b,c; a′,b′,c′ = εσ(a, b, c)S(a,b,c)σ; a′,b′,c′ ∀(a, b, c), (a′, b′, c′) ∈ P ′′k

where σ ∈ Gal(K/Q) for some cyclotomic extension K of Q, for some ε : P ′′k →
{±1} and a permutation λ 7→ λσ of P ′′k . From this we obtain a selection rule
for the physical invariant M :

Ma,b,c; a′,b′,c′ 6= 0⇒ εσ(a, b, c) = εσ(a′, b′, c′).

This can be solved exactly: we find that either k ∈ {4, 8, 10, 28} or that whenever
M0,0,0; a′,b′,c′ 6= 0 we have a′ ∈ {0, k}. The former case can be solved by brute
force. The latter solutions comprise the so-called A-D-E7-invariants1[23]. The
A-D-E7-invariants are defined by the condition

Ma,b,c; 0,0,0 6= 0⇒ (a, b, c) ∈ J (0, 0, 0)
M0,0,0; a′,b′,c′ 6= 0⇒ (a′, b′, c′) ∈ J (0, 0, 0)

1So called because in the classification of the ŝu(2)k WZW models [5], these are precisely
the models A,D and E7.
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where J is the set of simple currents of the physical invariant (see section 2.4.3).
This is a generalisation of the notion of simple current invariant (see sec-
tion 2.4.4). The classification of the physical invariants of ŝu(2)k⊕ û(1)2⊕ û(1)k
thus reduces to the classification of the A-D-E7-invariants of ŝu(2)k ⊕ û(1)2 ⊕
û(1)k, which is carried out using the ideas of [23].

3.2 Explicit classification of the minimal parti-
tion functions

We state the list of partition functions of the minimal models here for two
reasons: firstly, it did not appear explicitly in Gannon’s paper [26], and deserves
to be accessible in the literature; and secondly because there were a few minor
errors in the ‘trivial’ (read: beneath contempt2) application of the main theorem
of that paper to the case of ŝu(2)k⊕û(1)2⊕û(1)k. The corrections are highlighted
in footnotes.

Throughout this section and the rest of the paper J will denote the ŝu(2)k
simple current J : a 7→ k − a and we write k = k + 2.

k odd:

• We have a physical invariant M̃0 for each triple (v, z, n) with v|k, k|v2

and k(4z2−1)/v2 ∈ Z where z ∈ {1, ..., v2/k} and n ∈ {0, 1}. Its non-zero
entries are

M̃0
a,ck/v; a′,c′k/v

= 1 ⇐⇒

 a′ = J (a+c)na
c′ ≡ c+ (a+ c)n (mod 2)
c′ ≡ 2cz (mod v2/k)

 . (3.3)

4 divides k:

• We have a physical invariant M̃2,0 for each triple (v, z, n) with 2v|k, k|v2

and y := k(z2 − 1)/2v2 ∈ Z where z ∈ {1, ..., 2v2/k} and n ∈ {0, 1}. Its
non-zero entries are

M̃2,0

a,ck/v; a′,c′k/v
= 1 ⇐⇒

{
a′ = Jan+cya

c′ ≡ cz + ayv2/k (mod 2v2/k)

}
. (3.4)

• We have a physical invariant M̃2,1 for each triple (v, z, n) with 2v|k, 2v2

k
∈

2Z + 1 and k(z2 − 1)/2v2 ∈ Z where z ∈ {1, ..., 2v2/k} and n ∈ {0, 1}. Its
non-zero entries are

M̃2,1

a,ck/2v; a′,c′k/2v
= 1 ⇐⇒


a ≡ a′ ≡ c ≡ c′ (mod 2)
a′ = Jan+(c+c′)/2a

c′ ≡ cz (mod 2v2/k)

 . (3.5)

2Gannon’s words!
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• We have a physical invariant M̃2,2 for each quadruple (v, z, n,m) with
k/v odd, v2/k ∈ Z and k(z2 − 1)/4v2 ∈ Z where z ∈ {1, ..., 2v2/k} and
n,m ∈ {0, 1}. Its non-zero entries are

M̃2,2

a,ck/v; a′,c′k/v
= 1 ⇐⇒

{
a′ = Jan+cma

c′ ≡ cz + (a+ c)mv2/k (mod 2v2/k)

}
.

(3.6)

4 divides k

• If 8|k + 4 then we have a physical invariant M̃4,0 for each quadruple
(v, z, n,m) with k/2v ∈ Z, x := (1/4 + v2/2k) ∈ Z and k(z2 − 1)/2v2 ∈ Z
where z ∈ {1, ..., 2v2/k} and m,n ∈ {0, 1}. Its non-zero entries are

M̃4,0

a,ck/2v; a′,c′k/2v
= 1⇐⇒


c+ c′ ≡ a ≡ a′ (mod 2)
a′ = Jax+cn+c(1−c)/2a

c′ ≡ cz (mod 2v2/k)
2c′m+ c′(1− c′) ≡ 2cn+ c(1− c) (mod 4)

 .

(3.7)

Note that M̃4,0 is only symmetric when m = n. In fact (M̃ [v,z,n,m])T =
M̃ [v,z,m,n]. Note also that the condition that x be an integer follows
directly from the conditions that 8|k + 4 and k|2v2.

• If 8|k then we have a physical invariant3 M̃4,1 for each quadruple (v, z, x, y)
with v|k, k|v2, 2k(4z2 − 1)/v2 ≡ 7 (mod 8) where z ∈ {1, ..., v2/k} and
x, y ∈ {1, 3}. Its non-zero entries are

M̃4,1

a,ck/v; a′,c′k/v
= 1 + δa,k/2 ⇐⇒


a ≡ a′ ≡ 0 (mod 2)

a′ = J la for some l ∈ Z
c′ ≡ 2cz (mod v2/2k)
c(c− x) ≡ 2c′z (mod 4)
c′(c′ − y) ≡ 2cz (mod 4)

 . (3.8)

Note that M̃4,1 is only symmetric when x = y. In fact (M [v,z,x,y])T =
M [v,z,y,x]. Note also that the condition 2k(4z2 − 1)/v2 ≡ 7 (mod 8) is
equivalent to 2k(4z2 − 1)/v2 ∈ Z and k/8 ≡ z (mod 2).

• We have a physical invariant M̃4,2 for each triple (v, z, x) with 2v|k, k|2v2

and k(z2−1)/2v2 ∈ Z where z ∈ {1, ..., 2v2/k} and x ∈ {1, 3}. Its non-zero
entries are

M̃4,2

a,ck/2v; a′,c′k/2v
= 1 + δa,k/2 ⇐⇒


a ≡ a′ ≡ 0 (mod 2)

a′ = J la for some l ∈ Z
c′ ≡ cz (mod 2v2/k)
c′ ≡ cx (mod 4)

 . (3.9)

3In the original classification the modulo 8 condition was only given modulo 1
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• We have a physical invariant4 M̃4,3 for each triple (v, z, n) with 2v|k,
k|2v2 and k(z2 − 1)/4v2 ∈ Z where z ∈ {1, ..., 8v2/k} and n ∈ {0, 1}. Its
non-zero entries are

M̃4,3

a,ck/2v; a′,c′k/2v
= 1 ⇐⇒

 a′ = J (a+c)na

c′ ≡ cz (mod 2v2/k)
c′ ≡ cz + 2(a+ c)n (mod 4)

 . (3.10)

Exceptional Invariants

• When k = 10 we have a physical invariant Ẽ10
1 for the 2 pairs (v = 6, z)

with z ∈ {1, 5}. Ẽ10
1 = E10 ⊗M where E10 is the ŝu(2)10 exceptional

physical invariant and M is the projection onto the û(1) part of M̃2,0: the
non-zero entries of M are

M2c; 2c′ = 1 ⇐⇒
{
c′ ≡ cz (mod 6)

}
. (3.11)

• When k = 10 we have a physical invariant Ẽ10
2 for the 8 quadruples

(v = 12, z, n = 0,m) with z ∈ {1, 7, 17, 23} and m ∈ {0, 1}. Let E10

be the ŝu(2)10 exceptional physical invariant. Then M̃ is given by

(Ẽ10
2 )a,c; a′,c′ = 1 ⇐⇒

{
E10
Jcma,a′ = 1

c′ ≡ cz + 12(a+ c)m (mod 24)

}
. (3.12)

• When k = 16 we have a physical invariant Ẽ16
1 for the 12 quadruples

(v, z, x, y) with either v = 6, z = 2 or v = 18, z ∈ {4, 5}, and x, y ∈ {1, 3}.
Ẽ16

1 = E16 ⊗M where E16 is the ŝu(2)16 exceptional physical invariant
and M is the projection onto the û(1) part of M̃4,1: the non-zero entries
of M are

M18c/v; ,18c′/v = 1 ⇐⇒

 c′ ≡ 2cz (mod v2/36)
c(c− x) ≡ 0 (mod 4)
c′(c′ − y) ≡ 0 (mod 4)

 . (3.13)

• When k = 16 we have a physical invariant Ẽ16
2 for the 6 triples (v, z, x)

with either v = 3, z = 1 or v = 9, z ∈ {1, 8}, and x ∈ {1, 3}. Ẽ16
2 =

E16⊗M where E16 is the ŝu(2)16 exceptional physical invariant and M is
the projection onto the û(1) part of M̃4,2: the non-zero entries of M are:

M9c/v; 9c′/v = 1 ⇐⇒
{
c′ ≡ cz (mod v2/9)
c′ ≡ cx (mod 4)

}
. (3.14)

4In the original classification of the ŝu(2)k ⊕ du(1)2 ⊕ du(1)k invariants, the non-zero entries

of M4,3 should have read Ma,b,c; Jla,bx+2l,cv+2lv = 1 with (c + bv − av)v/k ∈ Z and l ∈ Z,

and z should be allowed to run from 1 to 8v2/k rather than only up to 4v2/k.
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• When k = 28 we have a physical invariant5 Ẽ28 for the 8 triples (v =
15, z, x) with z ∈ {1, 4, 11, 14} and x ∈ {1, 3}. Ẽ28 = E28 ⊗M where E28

is the ŝu(2)28 exceptional physical invariant and M is the projection onto
the û(1) part of M̃4,2: the non-zero entries of M are

M c; c′ = 1 ⇐⇒
{
c′ ≡ cz (mod 15)
c′ ≡ cx (mod 4)

}
. (3.15)

3.3 Simple examples of partition functions

To illustrate the foregoing classification, and to demonstrate that, at least for
the lowest levels, the partition functions turn out to be given in terms of familiar
functions, we will calculate the partition functions explicitly for levels k = 1 and
k = 2.

3.3.1 k = 1

Level k = 1 yields N = 2 superconformal unitary minimal models with central
charge c = 1. Since the string functions c(1)

0,0(τ) = c
(1)
1,1(τ) are equal to the

reciprocal of the Dedekind eta function 1
η(τ) , the characters in equation (2.9)

reduce to

χa,c(τ, z) =
1

η(τ)
Θ2c−3[a+c],6 (τ, z, 0)

= K
(6)
2c−3[a+c](τ, z)

where K(6)
x are the û(1)6 characters6 defined by

K(l)
x (τ, z) =

1
η(τ)

∑
Q∈Γ

(l)
x

qlQ
2
yQ, x ∈ Z2l, (3.16)

and the lattice Γ(l)
x is given by Γ(l)

x =
{(
n+ x

2l

)∣∣n ∈ Z
}

. We can then read off
the partition functions of the 4 minimal models with c = 1 from section 3.2.

We note here that the non-zero entries of the physical invariant with level
k odd and parameters v, z, n given in equation (3.3) can be expressed by the
formula

M̃0
a,ck/v; a′, c′k/v

= 1 ⇐⇒ (a′, c′) ≡ j(a+c)n

(
a,

(
2z − v2

k

)
c mod

2v2

k

)
,

(3.17)

5There are 16 physical invariants described as coming from M4,0 in the original classifica-
tion, but no such invariants in fact exist.

6The Kac-Moody algebra of du(1) does not have levels as such, since the generators can

always be rescaled. We borrowed the notation du(1)l from [8].
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where, as before, j is the simple current given by j(a, c) = (k − a, c + k). Spe-
cialising to the case k = 1 with parameters v = 3, z ∈ {2, 3}, n ∈ {0, 1} we read
off

Ma,c;a′,c′ = 1 ⇐⇒ (a′, c′) = j(a+c)n(a, (2z − 3)c),

and so the partition functions Z[v, z, n] read

Z[3, 2, 0](τ, z) =
∑
d∈Z12

Kd(τ, z)Kd(τ, z)∗ = ZR=
√

6(τ, z);

Z[3, 1, 1](τ, z) =
∑
d∈Z12

Kd(τ, z)K11d(τ, z)∗ = ZR= 1√
6
(τ, z),

Z[3, 2, 1](τ, z) =
∑
d∈Z12

Kd(τ, z)K7d(τ, z)∗ = Z
R=
√

3
2
(τ, z);

Z[3, 1, 0](τ, z) =
∑
d∈Z12

Kd(τ, z)K5d(τ, z)∗ = Z
R=
√

2
3
(τ, z);

where ZR is the partition function of the boson on the circle at radius R (see
e.g [33]):7

ZR(τ, z) =
1

|η(τ)|2
∑

(Q,Q)∈ΓR

qlQ
2
yQqlQ

2

yQ, (3.18)

ΓR =
{

1√
2l

( n
R

+mR,
n

R
−mR

)∣∣∣n,m ∈ Z
}
, (3.19)

where here l = 6. The pair (Q,Q) ∈ ΓR labels a conformal primary state with
U(1) charges (Q,Q) and conformal weights (h, h) = (6Q2, 6Q

2
).8

The partition function with [z, v, n] = [3, 2, 0] is that of the diagonal model.
The first and second partition functions, and the third and fourth partition
functions belong to mirror symmetry pairs. In the current case, we note that
mirror symmetry acts by T -duality, interchanging ZR and Z 1

R
.

3.3.2 k = 2

The level k = 2 models correspond to the N = 2 superconformal unitary mini-
mal models with central charge c = 3

2 . Again we can express the characters in
terms of familiar functions:

χa,c(τ, z) = c
(2)
a,c−[a+c](τ)

∑
j∈Z2

Θ2c+4(4j−[a+c]),16 (τ, 2z, 0)

7In our normalisation the self-dual radius is R = 1. Some authors use R =
√

2.
8It is perhaps more usual to re-scale the U(1) current for the boson on the circle by

√
12

to obtain h = Q2

2
. The price, of course, is that the N = 2 algebra, which is a symmetry of

these c = 1 theories at the special radii R,R−1 ∈ {
√

6,
q

3
2
}, will then differ from its usual

form: e.g. we would find [J0, G
±
r ] = ±

√
3G±r . See Waterson [65] for an explicit construction

of the irreducible representations of the unitary N = 2 minimal models at c = 1.
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= η(τ)c(2)
a,c−[a+c](τ)K(4)

c−2[a+c](τ, z)

where K(4)
x are the û(1)l characters given in equation (3.16) for l = 4 and x ∈ Z8,

and c(2)
a,c are the level 2 ŝu(2) string functions as before. The string functions can

be written in terms of the Jacobi theta functions and the Dedekind eta function
as follows:

η(τ)c(2)
a,c(τ) =


√

θ2(τ,0)
2η(τ) if a = 1

1
2

(√
θ3(τ,0)
η(τ) + (−1)

a+c
2

√
θ4(τ,0)
η(τ)

)
if a is even.

We can now evaluate the five modular invariant partition functions9 using the la-
bels [0; v, z] for the unique M̃2,0 invariant (see equation (3.4) – we have dropped
the label n since n = 0 or 1 give the same partition function when k = 2)
and labels [2; v, z,m] for the four partition functions in the family M̃2,2 (see
equation (3.6) – again we have dropped the n label).

Z[0; 2, 1](τ, z) = ZIsing(τ)ZR=1(τ, z);
Z[2; 4, 1, 0](τ, z) = ZIsing(τ)ZR=2(τ, z);
Z[2; 4, 7, 1](τ, z) = ZIsing(τ)ZR= 1

2
(τ, z);

Z[2; 4, 7, 0](τ, z) =
1
2

∑
c∈Z8

(∣∣∣∣θ3(τ, 0)
η(τ)

∣∣∣∣+ (−1)c
∣∣∣∣θ4(τ, 0)
η(τ)

∣∣∣∣)K(4)
c (τ, z)K(4)

3c (τ, z)∗

+
1
2

∣∣∣∣θ2(τ, 0)
η(τ)

∣∣∣∣ ∑
c∈Z8

K(4)
c (τ, z)K(4)

3c+4(τ, z)∗;

Z[2; 4, 1, 1](τ, z) =
1
2

∑
c∈Z8

(∣∣∣∣θ3(τ, 0)
η(τ)

∣∣∣∣+ (−1)c
∣∣∣∣θ4(τ, 0)
η(τ)

∣∣∣∣)K(4)
c (τ, z)K(4)

5c (τ, z)∗

+
1
2

∣∣∣∣θ2(τ, 0)
η(τ)

∣∣∣∣ ∑
c∈Z8

K(4)
c (τ, z)K(4)

5c+4(τ, z)∗,

where here

ZIsing =
1
2

(∣∣∣∣θ2(τ, 0)
η(τ)

∣∣∣∣+
∣∣∣∣θ3(τ, 0)
η(τ)

∣∣∣∣+
∣∣∣∣θ4(τ, 0)
η(τ)

∣∣∣∣)
is the partition function of the Ising model (see e.g. [33]), and ZR is the partition
function of the boson on the circle given in equation (3.18) with l = 4.

We note that the second partition function is that of the diagonal model.
The first partition function belongs to a self–mirror-symmetric model, and the
second and third, and the fourth and fifth partition functions belong to mirror

9In a later section when we count the number of simple current invariants, we will see that
there should be 10 partition functions at level 2. This discrepancy arises from the identity
A2 = D2, which does not generalise to other levels k.
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symmetry pairs. Again the mirror symmetry is realised via T -duality, by inter-
changing ZR and Z 1

R
; on the level of primary states it acts on the left-hand rep-

resentations by mapping the primary state |Ising〉⊗ |Q,Q〉 to |Ising〉⊗ |−Q,Q〉,
and similarly on the right-hand representations.

3.4 Classification of theories with space-time su-
persymmetry

In this section we show that those partition functions belonging to space-time
supersymmetric models fall into the well-known A-D-E pattern in accordance
with [46, 62]. Specifically we will find which of the partition functions satisfy
the following condition: the R-R sector of the theory should be obtained from
NS-NS sector under simultaneous spectral flow by half a unit on both chiral
halves of the theory, and the NS-R and R-NS sectors are similarly interchanged.
The spectral flow is rather easy to describe in our notation: it simply maps
between the NS sector and the R sector via (a, c) ↔ (a, c + 1) where a + c is
even. One can check using equations (2.6),(2.12) and (2.13) that for a+ c even
we have

hac → ha,c+1 = hac −Qac +
c
24
,

as expected from e.g. [38]. The constraint that a theory should be invariant
under the interchange of NS-NS↔R-R and NS-R↔R-NS is a very strong one.
In particular, since the vacuum representation must be present in any theory,
the representation obtained from the vacuum by spectral flow should be present
in the R-R sector; that is, M0,1; 0,1 6= 0. One can read off from the explicit list in
section 3.2 that the only space-time supersymmetric theories have the following
partition functions:

M̃0[v = k, 2z = 1, n = 0] = Ak ⊗ I2k, k odd

M̃2,2[v = k, z = 1, n = 0,m = 0] = Ak ⊗ I2k, 4 divides k

M̃2,2[v = k, z = 1, n = 1,m = 0] = Dk ⊗ I2k, 4 divides k

M̃4,3[v =
k

2
, z = 1, n = 0] = Ak ⊗ I2k, 4 divides k

M̃4,2[v =
k

2
, z = 1, x = 1] = D′k ⊗ I2k, 4 divides k

Ẽ10
2 [v = 12, z = 1, n = 0,m = 0] = E10 ⊗ I24, k = 10

Ẽ16
2 [v = 9, z = 1, x = 1] = E16 ⊗ I36, k = 16

Ẽ28[v = 15, z = 1, x = 1] = E28 ⊗ I60, k = 28

Here the Ak,Dk,Ek are the ŝu(2)k physical invariants of [5] and the I2k are û(1)k
diagonal invariants10. These theories have no NS-R or R-NS sectors, and the

10We use the notation I2k since they are 2k × 2k matrices. Some authors use Ik.
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NS-NS sector can be recovered from the R-R sector via spectral flow by half a
unit in the opposite direction.

The familiar A-D-E pattern has emerged. It is quite remarkable that the
A-D-E classification arises already at the level of partition functions.

We note here that there is (at least) one space-time supersymmetric minimal
model in each “orbifold class” of the unitary N = 2 minimal models; that is,
every partition function in Gannon’s list can be mapped to one of the space-time
supersymmetric partition functions by an orbifolding constructed in section 4.

3.5 Characterisation of the projection for odd k

Recall from section 2.3.2 that when we construct an N = 2 SCFT we need to
choose a projection from the full Hilbert space of the theory to a subspace with
modular invariant partition function. We now characterise this projection for
minimal models at odd level k.

From Gannon’s list of possible partition functions in section 3.2 we see that
when k is odd the modular invariant partition function associated to a physical
invariant M has no states in the NS-R or R-NS sectors. For such a theory we
saw in section 2.5.4 that there are actually two choices of projection in the R-R
sector, corresponding to the modular invariants M and M̂ (see equation (2.40)).

For concreteness we write M [v, z, n] for the physical invariant with parame-
ters v, z, n (see equation (3.3)). Then from the expression (3.17) we see that M
and M̂ correspond to M [v, z, 0] and M [v, z, 1].

Theorem 3.5.1. Let k be odd and fix v, z such that k
v ,

v2

k
∈ Z (see equa-

tion (3.3)). Then the modular invariant partition functions given by M [v, z, 0]
and M [v, z, 1] give rise to the same Hilbert space H. For n ∈ {0, 1} the pro-
jection from H to the modular invariant subspace corresponding to M [v, z, n] is
given by

Pb =
1
2

(
1 + (−1)(J0,J0)·(C,C)

)
where the scalar product is defined by

(Q,Q) · (C,C) := 8k(QC −QC) (3.20)

and (C,C) ∈ C2 are the left and right U(1) charges of any fixed R-R state in
the modular invariant subspace corresponding to M [v, z, n].

In other words, the projection corresponds to choosing one of the two natural
even sublattices of the integral charge lattice of the theory.

Proof. We first show that (Q,Q) · (Q′, Q′) ≡ 0 mod 2 whenever (Q,Q) and
(Q′, Q

′
) are the charges of states in the modular invariant subspace of H given by

the physical invariant M = M [v, z, n]. The states are counted by the partition
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function

Z(τ, z) =
∑

a+c∈Qk
a′+c′∈Qk

Ma,c; a′,c′χac(τ, z)χa′c′(τ, z)∗.

Recall from equations (2.14) and (2.15) that for all (ac) ∈ Qk the character χac
counts only states with U(1) charge equal to Qac mod 1. So we need to check
that for all (a, c), (a′, c′), (d, f), (d′, f ′) ∈ Qk we have

Ma,c; a′,c′ 6= 0,Md,f ; d′,f ′ 6= 0 =⇒ (Qac, Qa′c′) · (Qdf , Qd′f ′) ∈ 2Z.

So suppose Ma,c; a′,c′ 6= 0,Md,f ; d′,f ′ 6= 0. Then from equation (3.17) we see that
cv, fv ∈ kZ and

c′ =
(

2z − v2

k

)
c+ 2lv + [a+ c]nk

f ′ =
(

2z − v2

k

)
f + 2mv + [d+ f ]nk

for some l,m ∈ Z. We calculate

(Qac, Qa′c′) · (Qdf , Qd′f ′) =
2
k

(cf − c′f ′) + [d+ f ](c− c′)− [a+ c](f − f ′)

≡ 2
k

(cf − c′f ′) mod 2

using equation (2.13). Applying 4z2 ≡ 1 mod v2

k
(see equation (3.3)), we see

that this expression is an even integer.
Next we show that (−1)(J0,J0)·(C,C) is well-defined on all of H. Recall how

we constructed H from the modular invariant subspace given by M : whenever
Ma,c; a′,c′ 6= 0 (and hence by lemma 2.3.1 Mj(a,c); j(a′,c′) 6= 0) the states counted
by χacχ

∗
a′c′ and χj(a,c)χ

∗
j(a′,c′) are present in the modular invariant subspace,

and from equations (2.14) and (2.15) they have charges (Qac, Qa′c′) and (Qac +
1
2 , Qa′c′ + 1

2 ) mod 1. According to equations (2.29) and (2.31), to get the full
Hilbert space we should add in the states counted by χacχ∗j(a′c′) and χj(a,c)χ

∗
a′,c′

to obtain states with charges (Qac, Qa′c′ + 1
2 ) and (Qac + 1

2 , Qa′c′) mod 1. But
if Ma,c; a′,c′ 6= 0,Md,f ; d′,f ′ 6= 0 where (d, f), (d′, f ′) are R-R labels then(

Qac +
l

2
, Qa′c′ +

l′

2

)
· (Qdf , Qd′f ′) ≡ l + l′ mod 2.

Thus (−1)(J0,J0)·(C,C) is well-defined on HR and Pb projects to the invariant
subspace given by M .

3.6 Construction of minimal models

In this section we shall review how one should go about trying to construct
the minimal models via the parafermion-boson construction [55]. In the first
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section we will discuss the parafermion construction; in the next, we recall some
pertinent facts about the free boson. Then in section 3.6.3 we describe how
candidate fields for the minimal models may be found using the parafermion-
boson construction.

3.6.1 Parafermions

Parafermions are non-local fields with a Zk symmetry, generalising the k = 2
case of the usual fermions. They were first introduced by Zamolodchikov and
Fateev [17, 69]. The review in this section is taken from an article by Gepner
and Qiu [31], in which they calculated the characters of the representations of
the parafermion algebra. In the rest of this section we will take advantage of the
state-field correspondence, and so will be a little careless with the distinction
between states and fields.

The state space of the parafermion theory is a direct sum

H =
⊕
m,m

Hm,m

where the sum runs over charges in {(m,m) ∈ Z2k × Z2k|m−m ∈ 2Z} modulo
(m,m) ≡ (m + k,m + k), and Hm,m contains only those states with charge
(m,m).

H contains 2k − 1 distinguished fields ψl(z), ψl(z) for l = 0, . . . , k − 1. The
fields ψ0 and ψ0 correspond to the identity field. ψl(z) and ψl(z) have Z2k×Z2k

charges (2l, 0) and (0, 2l) respectively. We will introduce a scalar product on the
state space with respect to which we obtain the hermiticity relation ψ†l = ψk−l.

We now focus on the z-dependent fields, bearing in mind that the analogous
statements are true for the z-dependent fields. ψl has conformal weight dl =
l − l2

k . The OPE of two parafermions is given by

ψl(z)ψm(w) = cl,m(z − w)dl+m−dl−dm
∞∑
j=0

(z − w)jΨ(j)
l+m(w)

where Ψj
l+m ∈ H2(l+m),0 and cl,m ∈ C. We see that the mutual locality exponent

of ψl and ψm is dl+m − dl − dm = − 2lm
k (see below). The parafermion algebra

is then defined by the following OPEs:

ψl(z)ψm(w) = cl,m(z − w)−
2lm
k (ψl+m(w) +O(z − w)), l +m < k;

ψl(z)ψ†m(w) = cl,k−m(z − w)−
2l(k−m)

k (ψl−m(w) +O(z − w)), m < l;

ψl(z)ψl(w) = (z − w)−
2l(k−l)

k (I +
2dl
c

(z − w)2Tpf(w) +O((z − w)3)),

where c ∈ C. One then finds that Tpf(w) is a Virasoro field with central charge
c (i.e. that it obeys the first equation in (2.1)) if and only if c = 2(k−1)

k+2 .
Furthermore, the parafermion ψl is primary with respect to the Virasoro algebra
with conformal weight h = dl.
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The mutual locality of any two fields φa(z, z), φb(w,w) is measured by the
mutual locality exponent µ(a, b) (MLE). µ(a, b) is given by the factor picked
up by circling z once anti-clockwise around w. For example, if φa(z, z) and
φb(w,w) have OPE

φa(z, z)φb(w,w) = (z − w)µ|z − w|α [φc(w,w) + . . .]

then the mutual locality exponent is obtained by replacing z → w+(z−w)e2πit

and letting t→ 1. We obtain a factor of e2πiµ and so µ = µ(a, b) is the mutual
locality exponent.

The mutual locality exponent of any two fields in H with Z2k ×Z2k charges
(p, p), (q, q) is given by

µpf(p, p; q, q) = −pq − p q
2k

mod Z. (3.21)

We see that all fields in Hl,l and all fields in Hl,−l are mutually local.
We can expand the basic parafermionic fields ψ1(z), ψ†1(z) into their modes.

Let φl,l ∈ Hl,l with conformal weights (h, h). Then

ψ1(z)φl,l(0, 0) =
∞∑

m=−∞
z−

l
k+m−1A l

k−m
φl,l(0, 0),

ψ†1(z)φl,l(0, 0) =
∞∑

m=−∞
z
l
k+m−1A†− l

k−m
φl,l(0, 0),

where the power of z is determined by the mutual locality exponent of the two
fields. We obtain new fields A l

k−m
φl,l ∈ Hl+2,l and A†− l

k−m
φl,l ∈ Hl−2,l for each

m ∈ Z with conformal weights(
h+m− l + 1

k
, h

)
and

(
h+m− 1− l

k
, h

)
,

respectively. The analogous mode expansion on the right-hand side yields op-
erators Ar, A

†
r.

The Hilbert space H admits a description as being generated by the action
of Ar, A†r, Ar and A

†
r on certain primary fields; in other words H is the sum of

highest weight representations of the algebra generated by Ar, A
†
r, Ar and A

†
r.

The primary fields Φl,l
l,l
∈ Hl,l are defined to be those satisfying

A l
k+mΦl,l

l,l
= A†− l

k+m+1
Φl,l
l,l

= 0,

A l
k+m

Φl,l
l,l

= A
†
− l
k+m+1

Φl,l
l,l

= 0
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for all m ≥ 0 and l, l = 0, . . . k − 1. Their dimensions are

hl =
l(k − l)

2k(k + 2)
, hl =

l(k − l)
2k(k + 2)

.

Let us restrict our attention to just the left-handed fields once more. From
the parafermionic primaries above we can generate Virasoro primary fields by
acting several times with ψ1 and ψ†1:

Φll+2n = A l+2n−2
k −1A l+2n−4

k −1 . . . A l
k−1Φll, n = 0, 1, . . . k − l,

Φll−2n = A†− l−2n+2
k

A†− l−2n+4
k

. . . A†− l
k

Φll, n = 0, 1, . . . l.

Setting Φlm+2k = Φlm we obtain Virasoro primary fields Φlm for l = 0, . . . k − 1,
−l ≤ m ≤ 2k − l with conformal weight

hlm = hl +
(l −m)(l +m)

4k
, for − l ≤ m ≤ l;

hlm = hl +
(m− l)(2k − l −m)

4k
, for l ≤ m ≤ 2k − l.

Returning to the full left-right viewpoint, we can now further decompose H
according to both charge and parafermion algebra highest weight representation:

H =
⊕

Hl,l
m,m

where Hl,l
m,m contains states which are descendents of Φl,l

l,l
with charges (m,m) ≡

(m+ k,m+ k).
Finally we mention that σl := Φl,l

l,l
are called spin fields and µl := Φl,l−l,l are

dual spin fields.

3.6.2 The free boson

The field content of the theory of the free boson on the circle is well-known (see
e.g. [53]). The free boson is given by φ(z, z) = φ(z) + φ(z), where

φ(z) = φ0 − ia0 log(z) + i
∑
n 6=0

1
n
anz
−n

φ(z) = φ0 − ia0 log(z) + i
∑
n 6=0

1
n
anz
−n.

The modes φ0, an satisfy the commutator relations [am, an] = mδm+n,0 and
[φ0, a0] = i, and similarly for the right-handed modes. All other commutators
vanish. Due to the presence of the log, φ is not well-defined on the whole of C∗,
but only on simply connected subsets with a choice of branch of the log function.
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The commutators can be equivalently expressed via the locally-defined OPE of
φ(z, z) with itself:

φ(z, z)φ(w,w) ∼ −2 log |z − w|.

Let us again restrict attention to the left-movers. The energy-momentum
tensor is

Tb(z) = −1
2

: ∂φ(z)∂φ(z) :,

where : denotes normal-ordering. ∂φ(z), and hence T (z), is well defined on C∗,
and T (z) satisfies the Virasoro condition with central charge c = 1. The primary
fields are given by so-called vertex operators11

Vα(z) =: exp(iαφ(z)) :

≡ exp(iαφ−(z)) exp(iαφ+(z))

where we have decomposed φ(z) into creation and annihilation modes:

φ+(z) = −a0 log z + iz
∑
n>0

1
n
anz
−n

φ−(z) = φ0 − i
∑
n>0

1
n
a−nz

n.

The creation modes mutually commute, as do the annihilation modes, allowing
us to make sense of the exponential. Again, φ+(z) is only defined on simply
connected subsets of C∗ because of the log function, but the vertex operator
is well-defined on the whole of C∗. The vertex operators satisfy the following
equations:

[an, Vα(z)] = αznVα(z),
[Ln, am] = −mam+n

[Ln, Vα(z)] =
α2

2
(n+ 1)znVα(z) + zn+1∂Vα(z),

where, as usual, Ln are the modes of the energy-momentum tensor T (z). The
last equation tells us that Vα(z) is a primary field with conformal weight hα =
α2

2 .
The OPE of arbitrarily many vertex operators can be calculated explicitly:

Vα1(z1) . . . Vαn(zn) =: exp(iα1φ(z1) + . . .+ iαnφ(zn)) :
∏
j<k

(zj − zk)αjαk

11Note here that cocycles [19, 35] are not required: we do not wish to impose on the vertex
operators that they commute as in chapter 6 of [35]. Rather we want to allow bosonic and
fermionic vertex operators.
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where again the normal ordered product is defined by bringing all annihilation
modes to the right of all the creation modes. The n-point functions are then
seen to be

〈Vα1(z1) . . . Vαn(zn)〉 =
∏
j<k

(zj − zk)αjαk

as long as
∑
i αi = 0, and zero otherwise.

In particular, the OPE of two vertex operators is

Vα(z)Vβ(w) ∼ (z − w)αβVα+β(w) + . . . .

It will also be useful to consider full vertex operators which contain both left-
hand and right-hand modes:

Vα,β(z, z) =: exp(iαφ(z) + iβφ(z)) : (3.22)

=: Vα(z)V β(z) :, (3.23)

using the fact that the left-hand and right-hand modes mutually commute. Then

〈Vα1,β1(z1, z1) . . . Vαn,βn(zn, zn)〉 =
∏
j<k

(zj − zk)αjαk
∏
j<k

(zj − zk)βjβk

and we have the OPE

Vα1,β1(z, z)Vα2,β2(w,w) ∼ (z − w)α1α2(z − w)β1β2Vα1+α2,β1+β2(w,w) + . . .

= (z − w)α1α2−β1β2 |z − w|β1β2Vα1+α2,β1+β2(w,w) + . . .

from which we read of the mutual locality exponent of the fields Vα1,β1(z, z) and
Vα2,β2(w,w) as

µb(α1, β1;α2, β2) = α1α2 − β1β2 mod Z. (3.24)

3.6.3 Parafermion construction of the minimal models

This construction is due to Qiu [55]. Candidate fields for the N = 2 minimal
models at level k can be assembled out of the normal ordered product of the
parafermion theory with Zk symmetry and the theory of the free boson. The
left-movers are given by

T (z) = Tpf(z) + Tb(z)

J(z) =
i

2

√
k

k
∂φ(z)

G+(z) =

√
2k
k

: ψ1(z)Vq
k
k

(z) :

G−(z) =

√
2k
k

: ψ†1(z)V
−
q
k
k

(z) :
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and analogously for the right-movers. The primary fields are simply the nor-
mal ordered product of the parafermion primaries and an appropriate choice of
vertex operator:

φa,c; a′,c′(z, z) =: Φa,a
′

c−[a+c],c′−[a′+c′](z, z)Vαa,c,αa′,c′ (z, z) :, (3.25)

where Vα,α′(z, z) is the vertex operator given in equation (3.23) and

αa,c =
1√
kk

(
c− [a+ c]k

2

)
.

The parafermionic fields Φl,l
′

m,m′(z, z) were given in section 3.6.1. We emphasise
here that equation (3.25) defines fields for all a = 0, . . . , k and c ∈ Z. For
the range |c− [a+ c]| ≤ a we obtain genuine SVA primaries. We note that the
superconformal half-families [a, c] of section 2.4.2 are well defined for (a, c) ∈ Qk:
for example, using G+(z) ∼: ψ1(z)Vq

k
k

(z) : we have

φa,c+2k;a′,c′(w) =: Φa,a
′

c−b+4,c′−b′(w)Vαa,c+2k,αa′,c′
(w) :

∼ G+(x)G+(z)φa,c;a′,c′(w) ∈ [a, c; a′, c′].

For convenience, in what follows we will choose a representative of [a, c] with
−k + 1 ≤ c ≤ k.

It also follows immediately from equation (3.25) that the conformal weights
of φa,c; a′,c′ are given by equation (2.12) and its right-handed analogue12. Simi-
larly the U(1) charges are given by equation (2.13).

3.7 Some necessary conditions

At this point, we will prove two consistency checks of the minimal models, one
pertaining to the fusion rules and one to the locality of the theory.

3.7.1 Fusion rules

In section 2.4.2 we derived the chiral fusion rules of the minimal models. The
fusion rules enforce harsh restrictions on the OPE of a SCFT, so if a physical
invariant M really corresponds to the partition function of a minimal model, it
must pass a consistency test imposed by the fusion rules. This consistency test
was performed in the case of N = 0 minimal models by Gepner [29].

Consider a possible theory with partition function corresponding to some
physical invariant M . If fields φa,c;a′,c′ ∈ [a, c] ⊗ [a′c′] and φd,f ;d′,f ′ ∈ [d, f ] ⊗
[d′f ′] are present then the fusion rules restrict the fusion between φa,c;a′,c′ and

12Recall that this equation is exact for primary fields (when |c− [a + c]| ≤ a) and modulo
Z otherwise.
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φd,f ;d′,f ′ to lie in ∑
(α,γ)∈Qk

(α′,γ′)∈Qk

Nαγ
ac,dfN

α′γ′

a′c′,d′f ′ [α, γ]⊗ [α′, γ′].

This expression is further constrained since only fields that show up in the
partition function can be present13. If our theory is to be consistent, then we
require that the fusion between any two fields is non-zero. We confirm that the
N = 2 minimal models conform to this requirement in the following theorem:

Theorem 3.7.1. For any physical invariant M in the list of Gannon (see sec-
tion 3.2) we have

Ma,c;a′,c′ 6= 0, Md,f ;d′,f ′ 6= 0 =⇒ Nα,γ
ac,dfMα,γ;α′,γ′N

α′γ′

a′c′,d′f ′ 6= 0

for some (α, γ), (α′, γ′) ∈ Qk.

This proves that the fusion rules do not preclude the existence of the N = 2
minimal models.

Proof. The fusion coefficients N were given in lemma 2.4.1. One must work
through the list of physical invariants (3.3)-(3.15) checking the condition each
time by hand. The calculations are tedious and unenlightening, so they are not
presented here.

3.7.2 Semi-locality

In this section we will prove the following result:

Theorem 3.7.2. The fields appearing in the possible theories given by Gannon’s
list are semi-local to one another; that is, cycling one field around any other
inside an n-point function at worst introduces a square-root branch cut.

Proof. We first show that all fields counted by any possible bosonic partition
function are semi-local. We use the construction of the minimal models given
in section 3.6.3.

The mutual locality exponent of the field (3.25) is simply the sum of those
of its constituents. The MLE of the parafermionic part was given in equa-
tion (3.21), and that of the bosonic part was given in equation (3.24). Putting
these together we find that the MLE of the fields φa,c;a′,c′ and φd,f ;d′,f ′ is

µ((ac, a′c′); (df, d′f ′)) =
c′f ′ − cf

2k
+

[a+ c][d+ f ]− [a′ + c′][d′ + f ′]
4

.

13We remind the reader that the fusion rules give only an upper bound to the number fields
produced under fusion of two fields – it can easily happen that fewer fields appear than are
allowed by the fusion rules.
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One then trawls through the classification of section 3.2, checking that for each
M in equations (3.3)-(3.15):

Ma,c;a′,c′ 6= 0 and Md,f ;d′,f ′ 6= 0 =⇒ µ((ac, a′c′); (df, d′f ′)) ≡ 0 mod
1
2
.

The calculation are tedious but straightforward, and thus will not be presented
here. It follows that all fields counted by a bosonic partition are mutually semi-
local. Finally we note the fields in the full Hilbert space are obtained from these
by OPE with the operators T, J,G±, which have MEL µ ∈ 1

2Z and thus all fields
are at worst semi-local.

3.8 Examples of minimal models

We describe here the full field content of the minimal models for the first two
levels, which we can deduce from the well-understood field content of the free
boson and the Ising model.

3.8.1 k = 1

As we saw in section 3.3.1 the modular invariant partition functions of the N = 2
minimal models at level k = 1 are those of the theory of the boson compactified
on the circle of radius R = p√

6
where p ∈ {1, 2, 3, 6}. The primary fields are

labelled by (a, c) ∈ Q1 = {0, 1} × Z6. Let us use the more convenient label
d := 2c− 3[a+ c] ∈ Z12 (so in particular d even labels the NS sector and d odd
labels those in the R sector). Then the four partition functions correspond to
the physical invariants Md,d′ = δ(d′ = pd) with p = 1, 11, 7, 5 respectively, as
seen above.

The Virasoro primary fields are the vertex operators

Vd,d′(z, z) =: exp
(

id√
12
φ(z) +

id′√
12
φ(z)

)
:, d, d′ ∈ Z. (3.26)

and the N = 2 SVA primaries are those fields with −3 ≤ d, d′ ≤ 2. Vd,d′(z, z)
has conformal weights and U(1) charges

hd,d′ =
d2

24
, hd,d′ =

d′2

24
,

Qd,d′ =
d

12
, Qd,d′ =

d′

12
,

which agree with equations (2.12) and (2.13) when −3 ≤ d ≤ 2, and with the
right-handed analogues when −3 ≤ d′ ≤ 2. The n-point functions for the vertex
operators are

〈Vd1,d′1(z1, z1) . . . Vdn,d′n(zn, zn)〉 =
∏
j<k

(zj − zk)
djdk
12 (zj − zk)

d′jd
′
k

12 ,
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as long as
∑
j dj =

∑
j d
′
j = 0, and vanish otherwise. The OPE is

Vd1,d′1(z, z)Vd2,d′2(w,w) = (z − w)
d1d2
12 (z − w)

d′1d
′
2

12

×
(
Vd1+d2,d′1+d′2

(w,w) +O(|z − w|)
)
,

(3.27)

which yields additive fusion rules:

N
(d3,d

′
3)

(d1,d′1),(d2,d′2) = δ(d3 ≡ d1 + d2 mod 12) δ(d′3 ≡ d′1 + d′2 mod 12).

The fusion rules for each chiral half are therefore Nd3
d1,d2

= δ(d3 ≡ d1 + d2

mod 12), which agrees with the result of lemma 2.4.1. Finally, the fields given
by any of the partition functions are mutually local, as expected:

Vd,pd(z, z)Vd′,pd′(w,w) = |z − w|
p2dd′

12 (z − w)
1−p2

12 dd′

× (Vd+d′,p(d+d′)(w,w) +O(|z − w|)),

since p2 ≡ 1 mod 24. The supersymmetry operators are realised via

G±(z) = V±6,0(z)

and similarly for the right chiral half. The super partners for the primaries
Vd,pd(z, z) are therefore of the form Vd±6,pd′(z, z). As one can see from equa-
tion (3.27), this introduces a square-root branch cut into the OPE, so the fields
are at worst fermionic, as we expect for a SCFT.

3.8.2 k = 2

As we saw in section 3.3.2, the five possible partition functions are expressed
in terms of those of the Ising model and the free boson. The field content and
OPEs of the Ising model is well-known. The fields, given in table 3.1, admit a
closed associative OPE (see for example chapter 12 of [8]).

Table 3.1: Fields of the Ising model

Field h h

I 0 0

ψ(z) 1
2 0

ψ(z) 0 1
2

ε(z, z) 1
2

1
2

σ(z, z) 1
16

1
16

µ(z, z) 1
16

1
16

In terms of the parafermions of section 3.6.1, we have

I = Φ0,0
0,0 = Φ2,2

2,2 = Φ0,2
0,2 = Φ2,0

2,0
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ε(z, z) = Φ0,0
2,2 = Φ2,2

0,0 = Φ0,2
2,0 = Φ2,0

0,2

ψ(z) = Φ0,0
2,0 = Φ2,0

0,0 = Φ0,2
2,2 = Φ2,2

0,2

ψ(z) = Φ0,0
0,2 = Φ0,2

0,0 = Φ2,0
2,2 = Φ2,2

2,0

σ(z, z) = Φ1,1
1,1 = Φ1,1

−1,−1

µ(z, z) = Φ1,1
1,−1 = Φ1,1

−1,1.

We can now explicitly write out representative fields for each superconformal
half-family φa,c;a′,c′ appearing in the five minimal models at k = 2 in terms of
the Ising model fields and vertex operators. For convenience we will renormalise
the vertex operators so that

Vc,c′(z, z) =: exp
(

ic√
12
φ(z) +

ic′√
12
φ(z)

)
: .

We first consider the four partition functions M2,2[v, z, n] (see section 3.3.2).
The corresponding physical invariants M are in fact automorphism invariants
(i.e. permutation matrices). We can thus label a representative of the supercon-
formal half family [a, c]⊗[a′, c′] unambiguously by |a, c〉, whenever Ma,c;a′,c′ = 1.
The fields |a, c〉 are defined for a = 0, 1, 2 and c = −3, . . . , 4. They are listed in
tables 3.2, 3.3, 3.4 and 3.5, for the models M2,2[v, z, n] with [v, z, n] = [4, 1, 0],
[4, 1, 1], [4, 7, 0], [4, 7, 1], respectively. (See sections 3.3.2 and 3.2 for notation.)

Table 3.2: Fields of the model M2,2[4, 1, 0]

0 1 2

−3 IV3,3 σV−3,−3 εV3,3

−2 εV−2,−2 σV4,4 IV−2,−2

−1 εV−3,−3 σV−1,−1 IV−3,−3

0 IV0,0 σV−2,−2 εV0,0

1 IV−1,−1 σV1,1 εV−1,−1

2 εV2,2 σV0,0 IV2,2

3 εV1,1 σV3,3 IV1,1

4 IV4,4 σV2,2 εV4,4

We will next read off the primary fields in the full Hilbert space H (see
section 2.3), but first we observe that for fixed z, the models M2,2[4, z, n] with
n = 0, 1 are related by the symmetry of section 2.5.4. As we noted there,
models related by that symmetry and contain no states in the NS-R or R-
NS sectors (such as the ones currently under consideration) have identical full
Hilbert spaces.
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Table 3.3: Fields of the model M2,2[4, 1, 1]

0 1 2

−3 ψV3,−1 σV−3,−3 ψV3,−1

−2 εV−2,−2 µV4,0 IV−2,−2

−1 ψV−3,1 σV−1,−1 ψV−3,1

0 IV0,0 µV−2,2 εV0,0

1 ψV−1,3 σV1,1 ψV−1,3

2 εV2,2 µV0,4 IV2,2

3 ψV1,−3 σV3,3 ψV1,−3

4 IV4,4 µV2,−2 εV4,4

For the models M2,2[4, 1, 0] and M2,2[4, 1, 1] the NS-NS primary states are

IV0,0, εV0,0, σV1,1, σV−1,−1, IV2,2, IV−2,−2.

In the R-R sector there are three states of the form (R ground state)⊗(R ground
state) (see section 2.2.1). They are IV1,1, IV−1,−1, σV0,0. The remaining Ra-
mond primaries are14

{IV−3,−3, ψV1,−3, ψV−3,1, εV1,1}
{IV3,3, ψV−1,3, ψV3,−1, εV−1,−1}
{σV2,2, µV−2,2, µV2,−2, σV−2,−2}

For the models M2,2[4, 7, 0] and M2,2[4, 7, 1] the NS primary fields are

IV0,0, εV0,0, µV1,1, µV−1,−1, IV2,2, IV−2,−2.

In the R-R sector we again have three primaries of the form (R ground state)⊗(R
ground state): they are IV1,−1, IV−1,1, µV0,0, and the remaining primaries are

{IV−3,3, ψV1,3, ψV−3,−1, εV1,−1}
{IV3,−3, ψV−1,−3, ψV3,1, εV−1,1}
{σV2,2, µV−2,2, µV2,−2, σV−2,−2}

It is clear that the models M2,2[4, 1, 0] and M2,2[4, 1, 1] and the models
M2,2[4, 7, 0] and M2,2[4, 7, 1] are identical: they have the same field content
and the same OPE. But we can go further and show that all four models are

14Recall that Ramond primaries that are not Ramond ground states are degenerate with
multiplicity two in each chiral half. Thus the full left-right states have a four-fold degeneracy.
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Table 3.4: Fields of the model M2,2[4, 7, 0]

0 1 2

−3 ψV3,1 µV−3,3 ψV3,1

−2 εV−2,2 σV4,0 IV−2,2

−1 ψV−3,−1 µV−1,1 ψV−3,−1

0 IV0,0 σV−2,−2 εV0,0

1 ψV−1,−3 µV1,−1 ψV−1,−3

2 εV2,−2 σV0,4 IV2,−2

3 ψV1,3 µV3,−3 ψV1,3

4 IV4,4 σV2,2 εV4,4

Table 3.5: Fields of the model M2,2[4, 7, 1]

0 1 2

−3 IV3,−3 µV−3,3 εV3,−3

−2 εV−2,2 µV4,4 IV−2,2

−1 εV−3,3 µV−1,1 IV−3,3

0 IV0,0 µV−2,2 εV0,0

1 IV−1,1 µV1,−1 εV−1,1

2 εV2,−2 µV0,0 IV2,−2

3 εV1,−1 µV3,−3 IV1,−1

4 IV4,4 µV2,−2 εV4,4

equivalent. We note that there is a Z2 symmetry λ of the Ising model (see
e.g. [8]) which sends

σ ↔ µ

ψ ↔ ψ

ε↔ −ε

This map is an equivalence of CFTs; in other words the OPE is preserved under
this transformation of the fields. We can extend λ to an equivalence of SCFTs:
map a field AVc,c → λ(A)Vc,−c for A ∈ {I, ε, ψ, ψ, σ, µ}. This mapping takes the
field content of the first pair of models into the field content of the second, and
furthermore preserves the OPE of the SCFT, demonstrating the equivalence of
the four minimal models labelled by M2,2. In fact this mapping is nothing other
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than a realisation of mirror symmetry (see section 2.5.1).
Finally we turn to the model coming from the partition function M2,0[2, 1].

Precisely two representatives of [a, c] ⊗ [a′, c′] exist whenever c is even. Again
we will arrange them according to their (a, c) values: see table 3.6.

Table 3.6: Fields of the model M2,0[2, 1]

0 1 2

−2 εV−2,−2, εV−2,2 σV4,0, σV4,4 IV−2,2, IV−2,−2

0 IV0,0, IV0,4 σV−2,−2, σV−2,2 εV0,0, εV0,4

2 εV2,2, εV2,−2 σV0,0, σV0,4 IV2,2, IV2,−2

4 IV4,0, IV4,4 σV2,2, σV2,−2 εV4,0, εV4,4

The NS-NS primaries are

IV0,0, εV0,0, IV2,2, IV2,−2, IV−2,2, IV−2,−2, ψV0,0, ψV0,0.

The R-R primary fields are

σV0,0

µV0,0

{σV2,2, µV2,−2, µV−2,2, σV−2,−2}
{µV2,2, σV2,−2, σV−2,2, µV−2,−2}.

We note that all fields in each of the five models are semi-local with respect
to one another, and the full fusion rules for each are given by

N
(αγ,α′γ′)
(ac,a′c′);(df,d′f ′) = N

(αγ)
(ac),(df)Mα,γN

(α′γ′)
(a′c′),(d′f ′)

in accordance with the results of section 3.7.
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Chapter 4

Orbifolds of the N = 2
Unitary Minimal Models

The aim of this chapter is the construction of a unitary N = 2 minimal model
for each possible partition function. The main step is to prove the following
theorem:

Main Theorem.

• Every non-exceptional partition function of a unitary N = 2 minimal
model at level k can be obtained by orbifoldings of the diagonal partition
function at level k.

• Every exceptional partition function of a unitary N = 2 minimal model
with level k = 10, 16 or 28 can be obtained by orbifoldings of the E6 ⊗
I24, E7 ⊗ I36 or E8 ⊗ I60 partition functions, respectively, where E6,7,8 are
the ŝu(2)k exceptional physical invariants, and I2k is the û(1)k diagonal
invariant.

The proof is constructive: given any non-exceptional physical invariant M at
level k in Gannon’s list, we construct a chain of orbifoldings (by cyclic groups)
mapping M to a particular level k physical invariant. Since this also applies
to Ak, and since an orbifolding by a solvable group always has an orbifolding
inverse (see e.g. [33]), we see that any non-exceptional partition function belongs
to a model that can be obtained as the result of a chain of orbifoldings beginning
at the diagonal invariant. Similarly, given an exceptional physical invariant at
level k = 10, 16 or 28, we will construct a chain of orbifoldings to a particular
level k physical invariant.

The proof will be broken down into several sections. We must first explain
what we mean by orbifolding. This is done in section 4.1, and a simple example
is given in section 4.2. In section 4.3, we realise the symmetries of the minimal
models found in section 2.5 via orbifoldings.
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In section 4.4 we generalise a well-known Z2 orbifold from the ŝu(2)k models
to the minimal models, and observe that we can construct an orbifolding between
the minimal “families” listed in section 3.2.

In section 4.5 we state and prove a proposition that every physical invariant
M can be mapped into either M̃0, M̃4,2, M̃2,0, Ẽ10

1 , Ẽ16
2 or Ẽ28 depending on

the level k and whether M is exceptional or not.
We then attempt to control the parameter v – we find an orbifolding to map

any given physical invariant in one of the above families to the physical invariant
with the lowest possible value of v. This is section 4.6.

Lastly, in section 4.7 we try to control the parameter z. We summarise these
results in subsection 4.8, finally completing the proof.

4.1 The orbifold construction

We first describe the orbifolding procedure [13, 14, 12] in the case of a bosonic
CFT, i.e. when no fermionic modes are present. Let H be the underlying pre-
Hilbert space of a CFT C and let ρ : G → End(H) be an action of a discrete
group on H such that

1. H is simultaneously diagonalisable with respect to L0, L0 and ρ(g) for
every g ∈ G, where L0, L0 are viewed as linear operators on H;

2. ρ(g) commutes with Ln and Ln for every n, where Ln, Ln are viewed as
linear operators on H.

3. The action of G preserves the n-point functions of C.

Decomposing H =
⊕

a,b∈P Ha ⊗Hb into a direct sum of irreducible compo-
nents, we see that the above conditions imply that ρ(g) must act by multipli-
cation by a root of unity ξa,b(g) on the lowest weight vector of Ha ⊗ Hb, and
therefore by multiplication by ξa,b(g) on the whole of Ha ⊗ Hb. It follows that
the action of G on the states of H is entirely described by its action on the
characters ρ(g)(χacχ∗a′c′) = ξa,b(g)χacχ∗a′c′ . For notational simplicity we shall
now simply write g in place of ρ(g).

We want to construct aG-invariant CFT from C, theG-orbifold of C, denoted
C/G. We will restrict our attention to an abelian group G for ease of notation,
but one can generalise to non-abelian groups with a little care (see e.g. [33]).

We begin by projecting onto the G-invariant states of C:

Hinv := P ·H

where the projector P is given by 1
|G|
∑
g∈G g·. We use a notational shorthand

g

1

:= TrH(gqL0− c
24 qL0− c

24 )

53



for the trace with g inserted, which makes sense because of condition 1 above.
This allows us to write the partition function of the G-invariant sector as

Z inv(τ) = TrH(PqL0− c
24 qL0− c

24 ) =
1
|G|

∑
g∈G

g

1

.

Unless G is trivial, Z inv(τ) will not be modular invariant. In order to restore
modular invariance we need to add in extra G-invariant states, the so called
twisted states. Two problems arise here: how do we go about constructing the
twisted sector? And how do we extend the action of G to the twisted states?

The first question is difficult to answer in general, but we will only be in-
terested in the case of the unitary N = 2 minimal models. In this case we can
construct the twisted sector out of known representations, using the following
arguments: by condition 2, the Ln, Ln modes commute with the G-action and
so the central charge c is left invariant, and since the action of SL(2,Z) leaves
c invariant, the twisted sector should also be composed of irreducible represen-
tations at central charge c. But in the situation of interest to us, the collection
of irreducible representations are explicitly known for fixed c. Thus the twisted
sector can be constructed from these known representations. It is therefore suf-
ficient to find the partition function of the twisted sector using standard tricks
below.

The answer to the second question is that there may be no unique way to
extend the action of G to the twisted sector. The freedom we have in choosing
an extension is called discrete torsion and is classified by the second group
cohomology class H2(G,U(1)) [61]. Here we will need to consider only the
cases G = Zk with discrete torsion Z1 and G = Z2 × Z2k with discrete torsion
Z2.

We now return to the construction of the partition function of the twisted
sector. For each h ∈ G we denote by Hh the sector of states ‘twisted by h’ in
the space direction; in the language of fields we make a cut from 0 to τ along
the world-sheet torus T = C/(Z⊕ τZ) and require that a field crossing the cut
is acted on by h:

φ(z + 1) = hφ(z).

Since we want to keep only G-invariant states, we project the partition function
of Hh with P:

TrHh(PqL0− c
24 qL0− c

24 ) =
1
|G|

∑
g∈G

g

h

,

where we have introduced the notational shorthand

g

h

:= TrHh(gqL0− c
24 qL0− c

24 ).
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Then the partition function of the orbifold theory is the sum of the contributions
from each of the twisted sectors:

Zorb =
1
|G|

∑
g,h∈G

g

h

.

We interpret the box g

h

as counting states whose fields live on the world-sheet

torus with a cut along each cycle, such that cycling around once in the space-
direction yields a factor of h and cycling around once in the time-direction yields
a factor of g:

φ(z + 1) = hφ(z),
φ(z + τ) = gφ(z).

Then we find that the S and T -transformations act to permute the ‘boundary
conditions’ in the following way:

S

g

h

 = h−1

g

,

T

g

h

 = gh

h

,

thus ensuring modular invariance of the orbifold partition function.
This completes the construction for bosonic CFTs. In order to extend the

prescription to the SCFT case, we just replace the space of states H with the
bosonic states, and add the z-dependence (via yJ0) into the traces in the obvious
manner.

4.2 A simple example

As an illustration we present a well-known example: let H =
⊕

l=0,...,k Hl ⊗Hl

be the diagonal combination of irreducible representations of affine ŝu(2) at level
k, i.e. the A-model of the ŝu(2)k WZW-models ([5], or see [26] for review of the
classification of ŝu(2) WZW models). Writing χl(τ) for the character of Hl, the
partition function is

1

1

=
∑

l=0,...,k

χl(τ)χl(τ)∗.

Define an action of G = Z2 = 〈g〉 on H by g · |x〉 = (−1)l|x〉 for |x〉 ∈ Hl ⊗Hl.
Then the invariant-sector of H is

⊕
l even Hl ⊗Hl with partition function

Z inv =
1
2

1

1

+g

1
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=
∑
l even

χl(τ)χl(τ)∗.

We use the S-matrix to calculate 1

g

:

1

g

= S

g

1


=

∑
l=0,...,k

(−1)lχl(S · τ)χl(S · τ)∗

=
∑

l=0,...,k
a,a′=0,...,k

(−1)lSl,aS∗l,a′χa(τ)χa′(τ)∗

=
∑

l=0,...,k
a,a′=0,...,k

Sl,JaS
∗
l,a′χa(τ)χa′(τ)∗

=
∑

a,a′=0,...,k

δa′=Jaχa(τ)χa′(τ)∗

=
∑

a=0,...,k

χa(τ)χJa(τ)∗,

where we have used the fact that J : a 7→ k − a is a simple current and the
S-matrix is unitary and symmetric. Finally we calculate

g

g

= T

1

g


=

∑
a=0,...,k

χa(τ + 1)χJa(τ + 1)∗

=
∑

a=0,...,k

exp
[

2πi
4k

(
(a+ 1)2 − (Ja+ 1)2

)]
χa(τ)χJa(τ)∗

=
∑

a=0,...,k

exp
[
πi(2a− k)

2

]
χa(τ)χJa(τ)∗

using the expression for T from (2.19). Thus the twisted sector has partition
function

Ztwist =
1
2

1

g

+g

g


=


non-real coefficients if k is odd∑
a odd χa(τ)χk−a(τ)∗ if 4 divides k∑
a even χa(τ)χk−a(τ)∗ if 4 divides k
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and we find

Zorb =


no orbifolding if k is odd∑
a=0,...,k χJaa(τ)χa(τ)∗ if 4 divides k∑
a even(χa(τ) + χJa(τ))χa(τ)∗ if 4 divides k.

When k is odd, Ztwist has non-real coefficients, but Z inv has real coefficients.
Therefore Zorb = Ztwist + Z inv cannot have real coefficients, and cannot be
the partition function of an orbifold. When 4|k + 2 we obtain a Z2 orbifolding
Ak 7→ Dk and when 4|k we obtain a Z2 orbifolding Ak 7→ D′k.

4.3 Symmetries of the minimal models as orb-
ifoldings

The aim of this section is to demonstrate that the mappings between possible
partition functions enumerated in section 2.5 can be realised as orbifolds.

4.3.1 The orbifoldings O1
L,O1

R

Let H be a minimal model with partition function Z = Z(τ, z) from the list in
section 3.2. Write

Z = 1

1

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′χacχ
∗
a′c′

and let Z2 = 〈g〉 act on the states via g ·χacχ∗a′c′ = (−1)a+cχacχ
∗
a′c′ , i.e. leaving

the left-handed NS-sector invariant and twisting the left-handed R-states in the
time-direction. Then we find

g

1

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

(−1)a+cMa,c; a′,c′χacχ
∗
a′c′ ,

1

g

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

∑
(r,s)∈Qk
(t,u)∈Qk

(−1)a+cSr,s; a,cMa,c; a′,c′S
∗
a′,c′; t,uχrsχ

∗
tu

which, using equation (2.39),

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

∑
(r,s)∈Qk
(t,u)∈Qk

SJr,s+k; a,cMa,c; a′,c′S
∗
a′,c′; t,uχr,sχ

∗
t,u

=
∑

(r,s)∈Qk
(t,u)∈Qk

MJr,s+k; t,uχrsχ
∗
tu
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=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′χJa,c+kχ
∗
a′c′ ,

where in the penultimate line we used the fact that M and S commute and that
S is unitary and symmetric. Finally we calculate

g

g

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

∑
(r,s)∈Qk
(t,u)∈Qk

Tr,s; Ja,c+kMa,c; a′,c′T
∗
a′,c′; t,uχrsχ

∗
tu,

which, by equation (2.18),

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′e
2πi(hJa,c+k−ha′,c′ )χJa,c+kχ

∗
a′c′ ,

which, by equation (2.12),

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′e
2πi(ha,c−ha′,c′ )(−1)a+c+1χJa,c+kχ

∗
a′c′ ,

which, by equation (2.26),

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′(−1)a+c+1χJa,c+kχ
∗
a′c′

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

MJa,c+k; a′,c′(−1)a+c+1χacχ
∗
a′c′ .

This gives

Z inv =
∑

(a,c)∈Qk
(a′,c′)∈Qk
a+c even

Ma,c; a′,c′χacχ
∗
a′c′ ,

Ztwist =
∑

(a,c)∈Qk
(a′,c′)∈Qk
a+c odd

MJa,c+k; a′,c′χacχ
∗
a′c′ ,

Zorb =
∑

(a,c)∈Qk
(a′,c′)∈Qk
a+c even

Ma,c; a′,c′χacχ
∗
a′c′ +

∑
(a,c)∈Qk
(a′,c′)∈Qk
a+c odd

MJa,c+k; a′,c′χacχ
∗
a′c′ .

This orbifolding defines an involution on the set of physical invariants. We will
refer to this orbifolding as O1

L (where the L stands for left). Since S and T
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are symmetric, it is clear that we could equally well have let Z2 act on the
right-hand representations, g · χacχ∗a′c′ = (−1)a

′+c′χacχ
∗
a′c′ . The result would

be

Zorb =
∑

(a,c)∈Qk
(a′,c′)∈Qk
a′+c′ even

Ma,c; a′,c′χacχ
∗
a′c′ +

∑
(a,c)∈Qk
(a′,c′)∈Qk
a′+c′ odd

Ma,c; Ja′,c′+kχacχ
∗
a′c′ .

We will refer to this orbifolding as O1
R. Note that if there are no NS×R or

R×NS contributions then the action of Z2 on the left- and right-handed states
is the same. That the resulting partition functions are equal in this case follows
from Lemma 2.3.1.

4.3.2 The orbifoldings O2
L,O2

R

Again we start with a minimal model with partition function

Z = 1

1

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′χacχ
∗
a′c′

and define a group action by g · χacχ∗a′c′ = e
2πic
k χacχ

∗
a′c′ . This defines a Zk-

action. We claim that the general box is given by

gm

gn

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′e
2πim(c−n)

k χa,c−2nχ
∗
a′,c′ .

One easily checks that this is correct when n = 0. It remains to check that it
transforms correctly under the S and T transformations. For the T transfor-
mation we find, using equations (2.18), (2.12) and then (2.26),

T · gm
gn

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′e
2πim(c−n)

k e2πi(ha,c−2n−ha′,c′ )χa,c−2nχ
∗
a′,c′

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′e
2πi

m(c−n)
k e2πi

n(c−n)
k e2πi(ha,c−ha′,c′ )χa,c−2nχ

∗
a′,c′

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′e
2πi

(m+n)(c−n)
k χa,c−2nχ

∗
a′,c′

= gm+n

gn

.
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For the S-transformation we find, using equation (2.38) in the second and third
lines, and equation (2.24) in the next,

S · gm
gn

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

∑
(r,s)∈Qk
(t,u)∈Qk

Sr,s; a,c−2nMa,c; a′c′S
∗
a′,c′; t,ue

2πim(c−n)
k χrsχ

∗
tu

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

∑
(r,s)∈Qk
(t,u)∈Qk

Sr,s; a,cMa,c; a′c′S
∗
a′,c′; t,ue

2πi(m(c−n)−ns)
k χrsχ

∗
tu

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

∑
(r,s)∈Qk
(t,u)∈Qk

Sr,s+2m; a,cMa,c; a′c′S
∗
a′,c′; t,ue

2πi(−n(m+s))
k χrsχ

∗
tu

=
∑

(r,s)∈Qk
(t,u)∈Qk

Mr,s+2m; t,ue
2πi(−n(m+s))

k χrsχ
∗
tu

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′e
2πi(−n(c−m))

k χa,c−2mχ
∗
a′c′

= g−n

gm

.

Thus the boxes span a representation of SL2(Z). To calculate the resulting
orbifolding we need

Zgn :=
1
k

∑
m=0,...,k−1

gm

gn

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′

1
k

∑
m=0,...,k−1

e2πi
m(c−n)

k

χa,c−2nχ
∗
a′,c′

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′ δ(c ≡ n mod k)χa,c−2nχ
∗
a′,c′

=
∑

a=0,...,k
l=0,1

∑
(a′,c′)∈Qk

Ma,n+lk; a′,c′χa,−n+lkχ
∗
a′c′ .

Thus we see that

Zorb =
∑

n=0,...,k−1

Zgn

=
∑

a=0,...,k

∑
n=0,...,k−1

l=0,1

∑
(a′,c′)∈Qk

Ma,n+lk; a′,c′χa,−n+lkχ
∗
a′c′
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=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,−c; a′,c′χacχ
∗
a′c′ .

This orbifolding is well-defined on all physical invariants. We will refer to it by
O2
L. Again, the group Zk could equally as well have acted upon the right-hand

representations. In that case we would obtain

Zorb =
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,−c′χacχ
∗
a′c′ .

We will refer to this orbifolding as O2
R. Clearly these orbifoldings give the same

result if the initial physical invariant is symmetric.

4.3.3 Symmetries generated by O1
L,R and O2

L,R

Note that these orbifoldings are self-inverse, they are mutually commuting, and
the effect of concatenating O1

LO2
L or O1

RO2
R is to perform the left- or right-hand

mirror symmetry transformation of section 2.5.1, respectively. The orbifoldings
O2
L,R realise the symmetry given in section 2.5.3.

Performing charge conjugation on both sides simultaneously amounts to per-
forming all 4 orbifoldings O1

LO2
LO1

RO2
R in succession, recovering the charge con-

jugation symmetry of section 2.5.2. As discussed there, we consider two charge
conjugate models to be equivalent; and indeed they have the same partition
function.

The results of applying O1
L,R and O2

L,R to the minimal partition functions
listed in section 3.2 are given in table 4.1.1 The third column lists the values of
the defining parameters before any orbifolding is applied.

We can immediately read off from the table that performing the orbifoldings
O1
L,O1

R in succession leaves all of the partition functions invariant except for
M̃4,0[v, z, n,m] when n 6= m, M̃4,1[v, z, x, y] when x 6= y and Ẽ16

1 [v, z, x, y] when
x 6= y. These are precisely the physical invariants which are not symmetric2.
The effect of performing these two orbifoldings in succession is to transpose
these physical invariants, realising the symmetry of section 2.5.5. Thus we have
realised all the symmetries of section 2.5 via orbifolding.

We also observe that any two physical invariants in the same family with
parameters v1 = v2 and z1 = ±z2 can be mapped into one another by some
combination of the orbifoldings O1

L,O1
R,O2

L and O2
R, with the exception of the

family M̃2,2. In the next section we shall find an additional Z2 orbifolding which
allows to extend this observation to all families of minimal partition functions.

1The parameter z is defined modulo some number α in each case. −z is to be understood
as −z mod α.

2The transpose of the physical invariants was given in the classification of the partition
functions in section 3.2
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Ẽ

1
6

1
[v
,z
,x
,y

]
[v
,z
,x

+
2,
y
]

[v
,z
,x
,y

+
2]

[v
,−
z
,x

+
2,
y
]

[v
,−
z
,x
,y

+
2]

Ẽ
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4.4 The generalised Ak ↔ Dk orbifolding

The family M̃2,2 exists for any k with 4|k. Given such a k, we can always choose
v = k and z = 1. Then, from equation (3.6), we obtain a physical invariant M
with Ma,c; a′,c′ = δ(a′ = Jana)δ(c′ = c). Thus

M =

{
Ak ⊗ Ik if n = 0
Dk ⊗ Ik if n = 1,

where A and D are the ŝu(2)k physical invariants encountered in 4.2 and Ik is
the diagonal û(1)k invariant. Inspired by section 4.2, we define a Z2 action on
the states of an arbitrary physical invariant with 4|k by

g · χacχ∗a′c′ := (−1)aχacχ∗a′c′ .

Then we find

1

1

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′χacχ
∗
a′c′ ,

g

1

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

(−1)aMa,c; a′,c′χacχ
∗
a′c′ ,

1

g

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

∑
(r,s)∈Qk
(t,u)∈Qk

(−1)aSr,s; a,cMa,c; a′,c′S
∗
a′,c′; t,uχrsχ

∗
tu

Using equations (2.38) and (2.24) we have

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

∑
(r,s)∈Qk
(t,u)∈Qk

SJr,s; a,cMa,c; a′,c′S
∗
a′,c′; t,uχrsχ

∗
tu

=
∑

(r,s)∈Qk
(t,u)∈Qk

MJr,s; t,uχrsχ
∗
tu

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c′; a′,c′χJa,cχ
∗
a′c′ ,

and using equation (2.18), (2.12) and then (2.26) we find

g

g

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c′; a′,c′e
2πi(hJa,c−ha′c′ )χJa,cχ

∗
a′c′ ,
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=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c′; a′,c′e
2πi(ha,c−ha′c′ )(−1)a+1χJa,cχ

∗
a′c′

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c′; a′,c′(−1)a+1χJa,cχ
∗
a′c′ .

Thus

Z inv =
1
2

1

1

+g

1


=

∑
(a,c)∈Qk
a≡0 mod 2

∑
(a′,c′)∈Qk

Ma,c; a′,c′χacχ
∗
a′c′ ,

Ztwist =
1
2

1

g

+g

g


=

∑
(a,c)∈Qk
a≡1 mod 2

∑
(a′,c′)∈Qk

MJa,c; a′,c′χacχ
∗
a′c′ ,

Zorb =
∑

(a,c)∈Qk
(a′,c′)∈Qk

MJaa,c′; a′,c′χa,cχ
∗
a′c′ .

The action on the minimal partition functions 4|k is given by table 4.2.

Table 4.2:

M̃2,0 [v, z, n]↔ [v, z, n+ 1]

M̃2,1 [v, z, n]↔ [v, z, n+ 1]

M̃2,2 [v, z, n,m]↔ [v, z, n+ 1,m]

Ẽ10
1 [6, z]↔ [6, z]

Ẽ10
2 [12, z, 0,m]↔ [12, z, 0,m]

For M̃2,0 and M̃2,1 the action coincides with that of O1 (as we would expect
since if M̃a,c; a′c′ 6= 0 then c is even for these families). For M̃2,2 we have obtained
an additional Z2 symmetry, which along with O1 and O2 from the previous
section allows us to construct an orbifolding between any two M̃2,2 physical
invariants with v1 = v2 and z1 = ±z2. As one might expect, for the special case
v = k and z = 1 this orbifolding manifests itself as Ak ⊗ Ik ↔ Dk ⊗ Ik. The
exceptional physical invariants Ẽ10

1,2 are left invariant.
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One might naturally ask about the case 4|k: can we generalise the Z2 orb-
ifolding of section 4.2 to an orbifolding of minimal physical invariants? The
answer is yes; applying the Z2 group action g · χacχ∗a′c′ = (−1)aχacχ∗a′c′ to∑
Ma,c; a′,c′χacχ

∗
a′c′ , we find3

gm

gn

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

(−1)amMJna,c; a′,c′χacχ
∗
a′c′ , m, n ∈ Z2.

One checks that this transforms correctly under S, T . This furnishes us with an
orbifold

∑
a even(Ma,c; a′,c′+MJa,c; a′,c′)χacχ∗a′c′ . We will refer to the generalised

A ↔ D orbifolding as O3. This effect on the minimal partition functions with
4|k is given in table 4.3.

Table 4.3:

M̃4,0[v, z, n,m] → M̃4,2[v, z, 2m+ 2n+ 1]

M̃4,1[v, z, x, y] → M̃4,1[v, z, x, y]

M̃4,2[v, z, x] → M̃4,2[v, z, x]

M̃4,3[v, z, n] → M̃4,2[v, z, 2n+ z]

Ẽ16
1 [v, z, x, y] → Ẽ16

1 [v, z, x, y]

Ẽ16
2 [v, z, x] → Ẽ16

2 [v, z, x]

Ẽ28[15, z, x] → Ẽ28[15, z, x]

In particular, M̃4,3[k2 , 1, 0] = Ak is mapped to M̃4,2[k2 , 1, 1] = D′k as we
might expect. The physical invariants in the families M̃4,1 and M̃4,2 and the
exceptionals are left invariant.4 We note that physical invariants in M̃4,0 and
M̃4,3 are sent to M̃4,2 under this orbifolding. This demonstrates that orbifold-
ings can map between, as well as within, families of minimal partition functions.
In the next section we will show that in fact all the non-exceptional families at
a given level k can be mapped into one another via orbifoldings, and that the
same holds true for the exceptional families.

4.5 Orbifoldings between minimal families

We shall prove the following proposition:

3We could equally as well have acted on the right-hand side: g = (−1)a
′
. But one sees in

section 3.2 that if k is even and Ma,c; a′,c′ 6= 0 then a ≡ a′ mod 2.
4Actually the formula given above for the Z2 orbifolding has to be divided through by 2 in

order to get fM0,0; 0,0 = 1. This factor of 2 appears because Z2 acts trivially on all the states
so Z = Zinv = Ztwist and so Zorb = 2Z.
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Proposition 4.5.1. 1. Let k be odd. Then all simple current invariants at
level k can be mapped by an orbifolding to the family M̃0.

2. Let 4|k. Then all simple current invariants at level k can be mapped by
an orbifolding to the family M̃4,2.

3. Let 4|k. Then all simple current invariants at level k can be mapped by
an orbifolding to the family M̃2,0.

4. Let k = 10. Then all exceptional invariants at level k can be mapped by
an orbifolding to Ẽ10

1 .

5. Let k = 16. Then all exceptional invariants at level k can be mapped by
an orbifolding to Ẽ16

2 .

6. Let k = 28. Then all exceptional invariants at level k can be mapped by
an orbifolding to Ẽ28.

When k is odd there is only one family of partition functions of minimal
models and when k = 28 there is only one family of exceptionals, so parts 1 and
6 are trivial, but we include these statements for completeness.

4.5.1 Orbifoldings between minimal families: 4|k
In section 4.4 we saw that the generalised A ↔ D orbifolding O3 mapped
members of the family M̃4,0 and M̃4,3 into the family M̃4,2. We will now show
that M̃4,2 contains an orbifold of every member of the family M̃4,1, and that
Ẽ16

2 contains an orbifold of every member of Ẽ16
1 . This will prove parts 2 and

5.
Fix some k ∈ 4Z. We want to construct an orbifolding which in particular

sends M̃4,1 to M̃4,2. The latter only has entries in the NS×NS and R×R
sectors, but the former has entries in all 4 sectors. So we define a Z2 action by
g · χacχ∗a′c′ = (−1)a+c+a′+c′χacχ

∗
a′c′ in order to preserve the NS×NS and R×R

sectors and remove the NS×R and R×NS sectors. For m,n ∈ {0, 1} we find

gm

gn

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

(−1)(a+c+a′+c′)mMJna,c+nk; Jna′,c′+nkχacχ
∗
a′c′ .

This transforms correctly under the S- and T -transformations, resulting in an
orbifold

Zorb =
∑

a+c+a′+c′≡0 mod 2

(Ma,c; a′,c′ +MJa,c+k; Ja′,c′+k)χacχ∗a′c′ .

We call this orbifolding O4. It acts trivially on those physical invariants which
only have NS×NS and R×R sectors: M̃4,2, M̃4,3, Ẽ16

2 and Ẽ28. The action of
O4 on the other minimal partition functions that occur when 4|k is given in
table 4.45:

5Note that in the RHS of the second and fifth lines the parameter 2z is to be understood

66



Table 4.4:

M̃4,0[v, z, n,m] → M̃4,2[v, z, 2m+ 2n+ 1]

M̃4,1[v, z, x, y] → M̃4,2[v2 , 2z, y − x+ 1]

M̃4,2[v, z, x] → M̃4,2[v, z, x]

M̃4,3[v, z, n] → M̃4,3[v, z, 2n+ z]

Ẽ16
1 [v, z, x, y] → Ẽ16

2 [v2 , 2z, y − x+ 1]

Ẽ16
2 [v, z, x] → Ẽ16

2 [v, z, x]

Ẽ28[15, z, x] → Ẽ28[15, z, x]

4.5.2 Orbifoldings between minimal families: 4|k
In this section we shall show that all non-exceptional invariants with 4|k can
be mapped by an orbifolding into M̃2,0 and all exceptional invariants can be
mapped by an orbifolding into Ẽ10

1 , proving parts 3 and 4 of Proposition (4.5.1).

Orbifoldings between minimal families: M̃2,1 → M̃2,0

First we shall construct an orbifolding O5 from M̃2,1 to M̃2,0. Fix a k with
4|k and fix (v, z, n) satisfying k

2v ∈ Z, 2v2

k
∈ 2Z + 1 and k(z2−1)

2v2 ∈ Z where

z ∈ {1, . . . , 2v2

k
} and n ∈ {0, 1}. Then from section 3.2 there is a physical

invariant M̃2,1[v, z, n]. We need to define a group action on the states of M ≡
M̃2,1[v, z, n]. Note that Ma,d; a′,d′ 6= 0 ⇒ d = ck

2v , d
′ = c′k

2v and c + c′ ≡
0 mod 2; thus there is a Z2 action on the states given by g · χ

a, ck2v
χ∗
a, c
′k
2v

=

(−1)
c+c′

2 χ
a, ck2v

χ∗
a, c
′k
2v

and so we have

1

1

=
∑

a,a′=0,...,k
c,c′∈Z4v

M
a, ck2v ; a′, c

′k
2v
χ
a, ck2v

χ∗
a, c
′k
2v
,

g

1

=
∑

a,a′=0,...,k
c,c′∈Z4v

(−1)
c+c′

2 M
a, ck2v ; a′, c

′k
2v
χ
a, ck2v

χ∗
a, c
′k
2v
.

Using equation (2.38) in the second line and equation (2.24) in the third,

1

g

=
∑

a,a′=0,...,k
c,c′∈Z4v

∑
(r,s)∈Qk
(t,u)∈Qk

(−1)
c+c′

2 S
r,s; a, ck2v

M
a, ck2v ; a′, c

′k
2v
S∗
a′, c

′k
2v ; t,u

χrsχ
∗
tu

modulo v2

2k
. Recall that the z parameter in each of the minimal partition functions given in

section 3.2 is defined modulo some integer.
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=
∑

a,a′=0,...,k
c,c′∈Z4v

∑
(r,s)∈Qk
(t,u)∈Qk

S
r,s+v; a, ck2v

M
a, ck2v ; a′, c

′k
2v
S∗
a′, c

′k
2v ; t,u−v

χrsχ
∗
tu

=
∑

(r,s)∈Qk
(t,u)∈Qk

Mr,s+v; t,u−v χrsχ
∗
tu

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′ χa,c−vχ
∗
a′,c′+v.

Finally, using equation (2.18), (2.12) and then (2.26),

g

g

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′e
2πi(ha,c−v−ha′,c′+v)χa,c−vχ

∗
a′,c′+v,

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′e
2πiv
k

“
c+c′

2

”
e2πi(ha,c−ha′,c′ )χa,c−vχ

∗
a′,c′+v,

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

Ma,c; a′,c′e
2πiv
k

“
c+c′

2

”
χa,c−vχ

∗
a′,c′+v.

Since c ≡ c′ mod 2 whenever M
a, ck2v ; a′, c

′k
2v
6= 0 we can read off

Z inv =
∑

a,a′=0,...,k
c,c′∈Z4v

M
a, ck2v ; a′, c

′k
2v
δ(c+ c′ ≡ 0 mod 4) χ

a, ck2v
χ∗
a′, c

′k
2v
,

Ztwist =
∑

(a,c)∈Qk
(a′,c′)∈Qk

1
2

(
1 + e

2πiv
k

“
c+c′

2

”)
Ma,c+v; a′,c′−v χacχ

∗
a′c′

=
∑

a,a′=0,...,k
c,c′∈Z4v

M
a,
“
c+ 2v2

k

”
k
2v ; a′,

“
c′− 2v2

k

”
k
2v
δ(c+ c′ ≡ 0 mod 4) χ

a, ck2v
χ∗
a′, c

′k
2v
,

and

Zorb =
∑

a,a′=0,...,k
c,c′∈Z4v

(
M
a, ck2v ; a′, c

′k
2v

+M
a,
“
c+ 2v2

k

”
k
2v ; a′,

“
c′− 2v2

k

”
k
2v

)

× δ(c+ c′ ≡ 0 mod 4) χ
a, ck2v

χ∗
a′, c

′k
2v

=
∑

a,a′=0,...,k
c,c′∈Z4v

[
δ(a ≡ c mod 2) δ(a′ = Jan+ c+c′

2 a) δ
(
c′ ≡cz mod

2v2

k

)
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+ δ(a ≡ c+ 1 mod 2) δ(a′ = Jan+ c+c′
2 a) δ

(
c′ ≡cz mod

2v2

k

)]
× δ(c+ c′ ≡ 0 mod 4) χ

a, ck2v
χ∗
a′, c

′k
2v

=
∑

a,a′=0,...,k
c,c′∈Z4v

δ(a′ = Jana) δ
(
c′ ≡ cz mod

2v2

k

)

× δ(c+ c′ ≡ 0 mod 4)χ
a, ck2v

χ∗
a′, c

′k
2v
,

where in the second line we used the explicit expression for M̃2,1 given in equa-
tion (3.5).

Define z′ = z +
(

2v2

k

)2

(3 − z) ∈ Z 8v2

k

. Then, since z′ ≡ z mod 2v2

k
and

z′ ≡ −1 mod 4, we see that the conditions c′ ≡ cz mod 2v2

k
and c + c′ ≡ 0

mod 4 are equivalent to c′ ≡ cz′ mod 8v2

k
. Thus

Zorb =
∑

a,a′=0,...,k
c,c′∈Z4v

δ(a′ = Jana) δ
(
c′ ≡ cz′ mod

8v2

k

)
χ
a, ck2v

χ∗
a′, c

′k
2v

=
∑

a,a′=0,...,k
c,c′∈Z2v′

δ(a′ = Jana) δ
(
c′ ≡ cz′ mod

2v′2

k

)
χ
a, ck
v′
χ∗
a′, c

′k
v′
.

where we have written v′ = 2v. It remains to check that k
2v′ ,

v′2

k
∈ Z and that,

since z′ is odd, k(z′2−1)
2v′2 is even. Thus we see from (3.4) that

Zorb = M̃2,0[v′, z′, n], where v′ = 2v, z′ =
(

2v2

k

)2

(3− z).

Orbifoldings between minimal families: M̃2,2 → M̃2,0

Constructing an orbifolding O6 from M̃2,2 to M̃2,0 is a little more straightfor-
ward. Fixing some k such that 4|k, we define a Z2 action by g · χacχ∗a′c′ =
(−1)cχacχ∗a′c′ . We claim that for m,n ∈ {0, 1}

gm

gn

=
∑

(a,c)∈Qk
(a′,c′)∈Qk

(−1)cmMa,c+nk; a′,c′χacχ
∗
a′c′ .

This is evidently correct when n = 0 and it is not hard to check that it transforms
correctly under the S and T transformations. It yields

Zorb =
∑

(a,c)∈Qk
(a′,c′)∈Qk

[
Ma,c; a′,c′ +Ma,c+k; a′,c′

]
δ(c ≡ 0 mod 2)χacχ∗a′c′ . (4.1)
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Choose some v, z such that k
v is odd and v2

k
, k(z2−1)

4v2 ∈ Z. Then we can apply

O6 to the physical invariant M ≡ M̃2,2[v, z, n,m] by plugging equation (3.6)
into equation (4.1):

Zorb =
∑

a,a′=0,...,k
c,c′∈Z2v

[
δ(a′ = Jan+cma)δ

(
c′ ≡ cz +

(a+ c)mv2

k
mod

2v2

k

)

+ δ(a′ = Jan+cma)δ
(
c′ ≡ (c+ v)z +

(a+ c)mv2

k
mod

2v2

k

)]
× δ(c ≡ 0 mod 2)χ

a, ckv
χ∗
a, c
′k
v

=
∑

a,a′=0,...,k
c,c′∈Z2v

δ(a′ = Jana)δ
(
c′ ≡ cz mod

v2

k

)
δ(c ≡ 0 mod 2)χ

a, ckv
χ∗
a, c
′k
v

.

Since z is odd and v2

k
is even, we can absorb the condition c ≡ c′ ≡ 0 mod 2

into the range of definition of c and c′:

Zorb =
∑

a,a′=0,...,k
c,c′∈Zv

δ(a′ = Jana) δ
(
c′ ≡ cz mod

v2

2k

)
χ
a, 2ckv

χ∗
a, 2c

′k
v

=
∑

a,a′=0,...,k
c,c′∈Z2v′

δ(a′ = Jana) δ
(
c′ ≡ cz mod

2v′2

k

)
χ
a, ck
v′
χ∗
a, c
′k
v′

= M̃2,0[v′, z, n]

(see equation (3.4)), where we have set 2v′ = v and we understand z to be
defined modulo 2v′2

k
. This completes the proof of the assertion that all simple

current invariants with 4|k can be mapped via an orbifolding into the family
M̃2,0.

4.5.3 The exceptional case k = 10

It remains to show that the family Ẽ10
2 can be mapped via an orbifolding into the

family Ẽ10
1 . We simply apply the orbifolding O6 from the previous subsection

to the exceptional invariant Ẽ10
2 [12, v, 0,m]: substituting (3.12) into (4.1) we

obtain

Zorb =
∑

a,a′=0,...,k
c,c′∈Z24

δ(E10
Jcma,a′ = 1) [δ(c′ ≡ cz + 12(a+ c)m mod 12)

+ δ(c′ ≡ (c+ 12)z + 12(a+ c)m mod 12)] δ(c ≡ 0 mod 2)χacχ∗a′c′

=
∑

a,a′=0,...,k
c,c′∈Z24

δ(E10
a,a′ = 1)δ(c′ ≡ cz mod 12)δ(c ≡ 0 mod 2)χacχ∗a′c′
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=
∑

a,a′=0,...,k
c,c′∈Z12

δ(E10
a,a′ = 1)δ(c′ ≡ cz mod 6)χa,2cχ∗a′,2c′

= Ẽ10
1 [6, z].

This completes the proof of Proposition (4.5.1).

4.6 Orbifoldings within minimal families – con-
trolling the v parameter

Our overall aim is to find orbifoldings within the families M̃0, M̃4,2, M̃2,0, Ẽ10
1 ,

Ẽ16
2 and Ẽ28 which map all members down to a specific physical invariant.

Since we already have control of the Z2 parameters (labelled by n or x) via the
orbifoldings O1 and O2, in this section we concentrate on trying to control the
parameter v.

4.6.1 A useful formula

We begin by considering a general orbifolding by a group Zβ , acting on the û(1)
label c on the left-hand side.6 Fix a physical invariant M in one of the above
families and take the largest integer α such that

Ma,c; a′c′ 6= 0 ⇒ c, c′ ∈ αZ.

For these families, k
α2 ∈ Z. We will define a Zβ-orbifolding O7 for some integer

β satisfying β| kα2 . Let Zβ = 〈g〉 act on the states of M via g · χa,αcχ∗a′,αc′ =

e
2πic
β χa,αcχ

∗
a′,αc′ . We claim that the result is

gm

gn

=
∑

a,a′=0,...,k
c,c′∈Z 2k

α

Ma,αc; a′,αc′ e
2πim
β

“
c− nk

α2β

”
χ
a,α
“
c− 2nk

α2β

”χ∗a′,αc′ .

It is easy to see this is correct when n = 0. We must check that it behaves
correctly under the action of the S- and T -transformations:

S · gm
gn

=
∑

a,a′=0,...,k
c,c′∈Z 2k

α

∑
(r,s)∈Qk
(t,u)∈Qk

S
r,s; a,α

“
c− 2nk

α2β

”Ma,αc; a′,αc′S
∗
a′,c′; tu

× e
2πim
β

“
c− nk

α2β

”
χrsχ

∗
tu

=
∑

a,a′=0,...,k
c,c′∈Z 2k

α

∑
(r,s)∈Qk
(t,u)∈Qk

Sr,s; a,αcMa,αc; a′,αc′S
∗
a′,αc′; tu

6Note that the remaining families are all symmetric, so it doesn’t matter whether we act
on the left- or right-hand sides
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× e
2πimc
β e−

2πins
αβ e

− 2πimnk
α2β2 χrsχ

∗
tu

=
∑

a,a′=0,...,k
c,c′∈Z 2k

α

∑
(r,s)∈Qk
(t,u)∈Qk

S
r,s+ 2mk

αβ ; a,αc
Ma,αc; a′,αc′S

∗
a′,αc′; tu

× e−
2πins
αβ e

− 2πimnk
α2β2 χrsχ

∗
tu

=
∑

(r,s)∈Qk
(t,u)∈Qk

M
r,s+ 2mk

αβ ; tu
e
− 2πin

β

“
s
α+ mk

α2β

”
χrsχ

∗
tu

=
∑

a,a′=0,...,k
c,c′∈Z 2k

α

M
a,α
“
c+ 2mk

α2β

”
; a′,αc′

e
− 2πin

β

“
c+ mk

α2β

”
χa,αcχ

∗
a′,αc′

=
∑

a,a′=0,...,k
c,c′∈Z 2k

α

Ma,αc; a′,αc′ e
− 2πin

β

“
c− mk

α2β

”
χ
a,α
“
c+ 2mk

α2β

”χ∗a′,αc′

= g−n

gm

,

where, as usual, we used equations (2.38) in the second and third lines and equa-
tion (2.24) in the fourth. Just as in previous calculations, we use equation (2.18),
(2.12) and then (2.26) to compute

T · gm
gn

=
∑

a,a′=0,...,k
c,c′∈Z 2k

α

Ma,αc; a′,αc′ e
2πim
β

“
c− nk

α2β

”

× e
2πi

 
h
a,α

„
c− 2nk

α2β

«−ha′,αc′
!
χ
a,α
“
c− 2nk

α2β

”χ∗a′,αc′
=

∑
a,a′=0,...,k
c,c′∈Z 2k

α

Ma,αc; a′,αc′ e
2πim
β

“
c− nk

α2β

”

× e
2πin
β

“
c− nk

α2β

”
e2πi(ha,αc−ha′,αc′ )χ

a,α
“
c− 2nk

α2β

”χ∗a′,αc′
=

∑
a,a′=0,...,k
c,c′∈Z 2k

α

Ma,αc; a′,αc′ e
2πi(m+n)

β

“
c− nk

α2β

”
χ
a,α
“
c− 2nk

α2β

”χ∗a′,αc′

= gm+n

gn

,
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as required, and thus the boxes span a representation of SL2(Z). We can now
calculate the Zβ-invariant gN -twisted sectors for N = 0, . . . , β − 1:

ZN =
1
β

∑
M=0,...,β−1

gM

gN

=
1
β

∑
M=0,...,β−1

∑
a,a′=0,...,k
c,c′∈Z 2k

α

Ma,αc; a′,αc′ e
2πiM
β

“
c− Nk

α2β

”
χ
a,α
“
c− 2Nk

α2β

”χ∗a′,αc′

=
∑

a,a′=0,...,k
c,c′∈Z 2k

α

Ma,αc; a′,αc′

 1
β

∑
M=0,...,β−1

e
2πiM
β

“
c− Nk

α2β

”χ
a,α
“
c− 2Nk

α2β

”χ∗a′,αc′

=
∑

a,a′=0,...,k
c,c′∈Z 2k

α

Ma,αc; a′,αc′ δ

(
c ≡ Nk

α2β
mod β

)
χ
a,α
“
c− 2Nk

α2β

”χ∗a′,αc′

=
∑

a=0,...,k
s∈Z 2k

αβ

∑
a′=0,...,k
c′∈Z 2k

α

M
a,α
“
βs+ Nk

α2β

”
; a′,αc′

χ
a,α
“
βs− Nk

α2β

”χ∗a′,αc′ ,

where in the last line we wrote c = βs + Nk
α2β where s is defined modulo 2k

αβ .
The partition function of the orbifolding O7 is then given by the sum over the
twisted sectors:

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

M
a,α
“
sβ+ Nk

α2β

”
; a′,αc′

χ
a,α
“
sβ− Nk

α2β

”χ∗a′,αc′ . (4.2)

If it happens that k
α2β2 ∈ Z then the above simplifies to

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

M
a,αβ

“
s+ Nk

α2β2

”
; a′,αc′

χ
a,αβ

“
s− Nk

α2β2

”χ∗a′,αc′

=
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
α

M
a,αβ

“
c+ 2Nk

α2β2

”
; a′,αc′

χa,αβc χ
∗
a′,αc′ .

(4.3)

4.6.2 Controlling the parameter v

The aim of this subsection is to find an orbifolding which sends the parameter
v to the smallest possible value it can take:
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Proposition 4.6.1. Fix k and let M be a level k physical invariant in one of
the families M̃0, M̃4,2, M̃2,0, Ẽ10

1 , Ẽ16
2 or Ẽ28 with parameters (v, z, ∗) where ∗

is either n or x. Then we can map M via an orbifolding to a minimal partition
function within the same family with parameters (v′, z, ∗) where v′ is smallest
possible value of v allowed.

In the exceptional cases Ẽ10
1 and Ẽ28 there is only one allowed value of v, so

the proposition is trivial in these cases; they are included for completeness.
We shall prove the claim using the orbifoldings constructed in section 4.6.1.

The idea is to map by the orbifolding with the largest possible value of β that
satisfies k

α2β2 ∈ Z.

k odd

Let k be an odd integer and let M be a physical invariant at level k with
parameters (v, z, n) (see (3.3)). Write k =

∏l
i=1 p

2ai+δi
i where the pi are distinct

odd primes and δi ∈ {0, 1} for each i = 1, . . . , l. Similarly write v =
∏l
i=1 p

bi
i

for some integers bi. The conditions k
v ,

v2

k
∈ Z are equivalent to ai + δi ≤ bi ≤

2ai + δi, so we can define an integer β =
∏l
i=1 p

bi−ai−δi
i .

As in the previous section we find the biggest integer α such that Ma,c; a′c′ 6=
0 ⇒ c, c′ ∈ αZ; here, α = k

v =
∏l
i=1 p

2ai−bi+δi
i . With these values we see that

k
α2β2 =

∏l
i=1 p

δi
i ∈ Z, so we can perform O7, the Zβ orbifolding from the

previous subsection, on M using the simplified formula in equation (4.3).

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
α

M
a,αβ

“
c+ 2Nk

α2β2

”
; a′,αc′

χa,αβc χ
∗
a′,αc′

=
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
α

δ(a′ = Jn(a+c)a) δ(c′ ≡ c+ n(a+ c) mod 2)

× δ
(
c′ ≡ 2zβ

(
c+

2Nk
α2β2

)
mod

k

α2

)
χa,αβc χ

∗
a′,αc′

=
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
αβ

δ(a′ = Jn(a+c)a) δ(c′ ≡ c+ n(a+ c) mod 2)

× δ
(
c′ ≡ 2z

(
c+

2Nk
α2β2

)
mod

k

α2β

)
χa,αβc χ

∗
a′,αβc′ ,

where in the last line we implement the fact that the summand vanishes unless
c′ ≡ 0 mod β. Now let us evaluate

∑
N∈Zβ δ(x ≡ 4zN k

α2β2 mod k
α2β ). From

the condition (2z + 1)(2z − 1) ≡ 0 mod k
α2 and the fact that β divides k

α2 we
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see that hcf(2z, β) = 1. β is odd, so in fact hcf(4z, β) = 1. It follows that 4zN
mod β cycles over the values 1, . . . , β as N runs over 1, . . . , β. Thus

∑
N∈Zβ

δ

(
x ≡ 4zN

k

α2β2
mod

k

α2β

)
=
∑
N∈Zβ

δ

(
x ≡ N k

α2β2
mod

k

α2β

)

= δ

(
x ≡ 0 mod

k

α2β2

)
.

Plugging this with x = c′ − 2zc into the main calculation gives

Zorb =
∑

a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
αβ

δ(a′ = Jn(a+c)a) δ(c′ ≡ c+ n(a+ c) mod 2)

× δ
(
c′ ≡ 2zc mod

k

α2β2

)
χa,αβcχ

∗
a′,αβc′

=
∑

a=0,...,k
a′=0,...,k

∑
c∈Z2v′
c′∈Z2v′

δ(a′ = Jn(a+c)a) δ(c′ ≡ c+ n(a+ c) mod 2)

× δ
(
c′ ≡ 2zc mod

v′2

k

)
χ
a, ck
v′
χ∗
a′, c

′k
v′

= M̃0[v′, z, n]

where we have defined v′ = k
αβ =

∏l
i=1 p

ai+δi
i . Note that this is the smallest

divisor v′ of k satisfying v′2

k
∈ Z. Thus we have successfully minimised the

parameter v.

4 divides k

The M̃4,2 case is similar. Fix k such that 4|k and choose a minimal M̃4,2 invari-
ant with parameters (v, z, x) (see equation (3.9)). We write k = 2

∏l
i=1 p

2ai+δi
i

with pi distinct odd primes and δi ∈ {0, 1} and write v =
∏l
i=1 p

bi
i for some

integers bi. This time α = k
2v =

∏l
i=1 p

2ai−bi+δi
i and we set β =

∏l
i=1 p

bi−ai−δi
i .

Again we find that k
α2β2 =

∏l
i=1 p

δi
i ∈ Z so we can use equations (4.3) and (3.9)

to calculate the Zβ orbifolding:

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
α

M
a,αβ

“
c+ 2Nk

α2β2

”
; a′,αc′

χa,αβc χ
∗
a′,αc′

=
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
α

δ(a ≡ a′ ≡ 0 mod 2) (δ(a′ = a) + δ(a′ = Ja))
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× δ
(
c′ ≡ βx

(
c+

2Nk
α2β2

)
mod 4

)
× δ

(
c′ ≡ βz

(
c+

2Nk
α2β2

)
mod

k

2α2

)
χa,αβc χ

∗
a′,αc′

=
∑

a=0,...,k
a′=0,...,k

δ(a ≡ a′ ≡ 0 mod 2) (δ(a′ = a) + δ(a′ = Ja))

×
∑

c,c′∈Z 2k
αβ

δ (c′ ≡ cx mod 4)

×
∑

N=0,...,β−1

δ

(
c′ ≡ z

(
c+

2Nk
α2β2

)
mod

k

2α2β

)
χa,αβc χ

∗
a′,αβc′ .

We use the condition z2 − 1 ≡ 0 mod k
2α2 and the fact that β divides k

2α2 to
deduce that hcf(z, β) = 1. Since β is odd, hcf(4z, β) = 1, and so

∑
N=0,...,β−1

δ

(
x ≡ 4z

Nk

α2β2
mod

k

2α2β

)
=

∑
N=0,...,β−1

δ

(
x ≡ Nk

α2β2
mod

k

2α2β

)

= δ

(
x ≡ 0 mod

k

2α2β2

)
.

Setting x = c′ − cz we find

Zorb =
∑

a=0,...,k
a′=0,...,k

δ(a ≡ a′ ≡ 0 mod 2) (δ(a′ = a) + δ(a′ = Ja))

×
∑

c∈Z 2k
αβ

c′∈Z 2k
αβ

δ (c′ ≡ cx mod 4)× δ
(
c′ ≡ cz mod

k

2α2β2

)
χa,αβc χ

∗
a′,αβc′

=
∑

a=0,...,k
a′=0,...,k

δ(a ≡ a′ ≡ 0 mod 2) (δ(a′ = a) + δ(a′ = Ja))

×
∑
c∈Z4v′
c′∈Z4v′

δ (c′ ≡ cx mod 4)× δ
(
c′ ≡ cz mod

2v′2

k

)
χ
a, ck2v′

χ∗
a′, c

′k
2v′

= M̃4,2[v′, z, x],

where we have defined v′ = k
2αβ =

∏l
i=1 p

ai+δi
i . This shows that for a fixed k

we can always send v to its smallest possible value in the family M̃4,2.
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4 divides k

Finally we address the case when k satisfies 4|k. Fix such a k and a M̃2,0

physical invariant M with parameters (v, z, n) (see equation (3.4)). As before
write k =

∏l
i=0 p

2ai+δi
i where p0 = 2 and the pi are distinct odd primes for i ≥ 1,

δi ∈ {0, 1} for each i = 0, . . . , l and a0 ≥ 1. For this physical invariant α = k
v =∏l

i=0 p
2ai+δi−bi
i and we set β =

∏l
i=0 p

bi−ai−δi
i , which is bound to be an integer

by the condition v2

k
∈ Z. We find once again that k

α2β2 =
∏l
i=0 p

δi
i ∈ Z and so

we can use the formula (4.3) to calculate the Zβ orbifold of M . Substituting in
equation (3.4) we find

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
α

δ(a′ = Jan+cβya)

× δ
(
c′ ≡ βz

(
c+

2Nk
α2β2

)
+
ayk

α2
mod

2k
α2

)
χa,αβc χ

∗
a′,αc′

=
∑

a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
αβ

δ(a′ = Jan+cβya)

× δ
(
c′ ≡ cz + aβy

k

α2β2
mod

2k
α2β2

)
χa,αβc χ

∗
a′,αβc′

by the same arguments as in the previous two cases. The only subtlety here is
why βy is even: clearly if β is even, we are done. If β is odd then b0−a0 = δ0 ∈
{0, 1}. Now βy = z2−1

2
Ql
i=0 p

bi−ai
i

, so the denominator is even, but not a multiple

of 8. That forces z to be odd, and so z2 − 1 ≡ 0 mod 8 and βy is even. Thus

Zorb =
∑

a=0,...,k
a′=0,...,k

∑
c∈Z 2k

αβ

c′∈Z 2k
αβ

δ(a′ = Jana) δ
(
c′ ≡ cz mod

2k
α2β2

)
χa,αβc χ

∗
a′,αβc′

=
∑

a=0,...,k
a′=0,...,k

∑
c∈Z2v′
c′∈Z2v′

δ(a′ = Jana) δ
(
c′ ≡ cz mod

2v′2

k

)
χ
a, ck
v′
χ∗
a′, c

′k
v′

= M̃2,0[v′, z, n]

where we have defined v′ = k
αβ =

∏l
i=0 p

ai+δi
i . This completes the proof of

proposition 4.6.1 for the simple current invariants.
It remains to check the case Ẽ16

2 . Let M be the physical invariant Ẽ16
2 with

parameters (v = 9, z, x). Then α = 1 and we choose β = 3 so that k
α2β2 = 2 ∈ Z.
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It is then straight-forward to apply equation (4.3) to find

Zorb =
∑

N=0,1,2
a,a′=0,...,16

∑
c∈Z12
c′∈Z36

Ma,3(c+4N); a′c′ χa,3c χ
∗
a′c′

=
∑

N=0,1,2
a,a′=0,...,16

∑
c∈Z12
c′∈Z36

δ(E16
a,a′ = 1)δ(c′ ≡ 3z(c+ 4N) mod 9)

× δ(c′ ≡ 3cx mod 4) χa,3c χ∗a′c′

=
∑

a,a′=0,...,16

∑
c∈Z12
c′∈Z12

δ(E16
a,a′ = 1)δ(c′ ≡ cx mod 4) χa,3c χ∗a′3c′

= Ẽ16
2 [3, 1, x].

4.7 Orbifoldings within minimal families – con-
trolling the z parameter

Now that we can map via orbifoldings any minimal partition function into a
particular family with a particular value of v, it remains to find an orbifolding
which lets us control the parameter z. We will prove

Proposition 4.7.1. Fix k and let M be a level k physical invariant in one of the
families M̃0, M̃4,2, M̃2,0, Ẽ10

1 , Ẽ16
2 or Ẽ28 with parameters (v, z, ∗) where v is

as small as possible and ∗ is either n or x. Then we can map M via orbifoldings
to a physical invariant within the same family with parameters (v, z′, ∗) where{

2z ≡ 1 mod v2

k
for odd k,

z ≡ 1 mod 2v2

k
otherwise.

When v is minimised in the family Ẽ16
2 then z is forced to be 1, so the

statement is trivial is this case; it is included in the proposition only for com-
pleteness.

The proof is similar for each family of simple current invariants, so we do
the odd k case in detail and then go through the other two simple current cases
a little more quickly. Finally we will tackle the exceptional cases.

k odd

Let k be odd and let M be a level k physical invariant with parameters (v, z, n)
where v is as small as possible (see (3.3)). Write k =

∏l
i=1 p

2ai+1
i

∏m
j=1 q

2bj
j

where the pi and qj are mutually distinct odd primes. Then since v is the
smallest solution to k

v ,
v2

k
∈ Z, we must have v =

∏l
i=1 p

ai+1
i

∏m
j=1 q

bj
j and

therefore v2

k
=
∏l
i=1 pi. Now z is defined to be a solution to 4z2 − 1 ≡ 0
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mod v2

k
. So we have

(2z + 1)(2z − 1) ≡ 0 mod
l∏
i=1

pi.

But since a given odd prime cannot divide both 2z+1 and 2z−1, it is equivalent
to say that there must exist a partition {pi1 , . . . , pit} ∪ {pj1 , . . . , pju} of the pi
such that {

2z + 1 ≡ 0 mod
∏t
k=1 pik ,

2z − 1 ≡ 0 mod
∏u
k=1 pjk .

(4.4)

We are trying to map this physical invariant via an orbifolding to one where z
is given by the choice of partition {} ∪ {p1, . . . , pl}. So we set β =

∏t
k=1 pik

and try to make a Zβ orbifold. Recall that the largest integer α satisfying the
condition

Ma,c; a′,c′ 6= 0 ⇒ c, c′ ∈ αZ

is α = k
v =

∏l
i=1 p

ai
i

∏m
j=1 q

bj
j . Thus k

α2β =
∏u
k=1 pjk ∈ Z and we can apply the

orbifolding in equation (4.2). We obtain

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

M
a,α
“
sβ+ Nk

α2β

”
; a′,αc′

χ
a,α
“
sβ− Nk

α2β

”χ∗a′,αc′ .

Note that hcf
(
β, k

α2β

)
= 1 so we cannot pull out any common factor in the ‘c’

label as we did in equation (4.3). This is as it should be, as it was that mech-
anism that was used to change the value of v in the previous proposition. We
now substitute in equation (3.3), the defining equation of the physical invariant
M , to find

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

δ(a′ = Jn(a+s+N)a) δ(c′ ≡ s+N+n(a+s+N) mod 2)

× δ
(
c′ ≡ 2z

(
sβ +

Nk

α2β

)
mod

k

α2

)
χ
a,α
“
sβ− Nk

α2β

”χ∗a′,αc′ .
We claim that 2z

(
sβ + Nk

α2β

)
≡ sβ − Nk

α2β mod k
α2 . To prove this note that we

have

2z
(
sβ +

Nk

α2β

)
−
(
sβ − Nk

α2β

)
≡ (2z + 1)N

k

α2β
+ (2z − 1)sβ
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≡ (2z + 1)N
u∏
k=1

pjk + (2z − 1)s
t∏

k=1

pik

≡ 0 mod
l∏

k=1

pk

by equation (4.4). Substituting this back in allows us to make a simple change
of variables:

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

δ(a′ = Jn(a+s+N)a) δ(c′ ≡ s+N+n(a+s+N) mod 2)

× δ
(
c′ ≡

(
sβ − Nk

α2β

)
mod

k

α2

)
χ
a,α
“
sβ− Nk

α2β

”χ∗a′,αc′
=

∑
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

α

c′∈Z 2k
α

δ(a′ = Jn(a+c)a) δ(c′ ≡ c+ n(a+ c) mod 2)

× δ
(
c′ ≡ c mod

k

α2

)
χa,αc χ

∗
a′,αc′

= M̃0[v, z′, n]

where z′ is the unique solution to 2z ≡ 1 modulo v2

k
as required.

4 divides k

The proof of proposition 4.7.1 in the case where 4|k proceeds in a very similar
way to the case where k is odd. Fix a physical invariant M ≡ M̃4,2 with param-
eters (v, z, x) where v is minimal. We write k = 2

∏l
i=1 p

2ai+1
i

∏m
j=1 q

2bj
j with

pi, qj mutually distinct odd primes and note that since v is minimal (see (3.9))
we must have v =

∏l
i=1 p

ai+1
i

∏m
j=1 q

bj
j and 2v2

k
=
∏l
i=1 pi. The equation for z

for M̃4,2 is z2 − 1 ≡ 0 mod 2v2

k
so we have (z + 1)(z − 1) ≡ 0 mod

∏l
i=1 pi.

Equivalently, there exists a t such that, after relabelling the pi,{
z + 1 ≡ 0 mod

∏t
i=1 pi,

z − 1 ≡ 0 mod
∏l
i=t+1 pi.

(4.5)

This time α = k
2v =

∏l
i=1 p

ai
i

∏m
j=1 q

bj
j and again we set β =

∏t
i=1 pi. Then we

can perform the Zβ orbifolding given in equation (4.2) on M by substituting in
equation (3.9):

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

M
a,α
“
sβ+ Nk

α2β

”
; a′,αc′

χ
a,α
“
sβ− Nk

α2β

”χ∗a′,αc′
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=
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

D′a,a′δ(c′ = (sβ + 2N)x mod 4)

× δ
(
c′ ≡

(
sβ +

Nk

α2β

)
z mod

k

2α2

)
χ
a,α
“
sβ− Nk

α2β

”χ∗a′,αc′ .
But equation (4.5) implies

(
sβ + Nk

α2β

)
z ≡ sβ − Nk

α2β mod k
2α2 and so we find

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

D′a,a′δ(c′ = (sβ + 2N)x mod 4)

× δ
(
c′ ≡ sβ − Nk

α2β
mod

k

2α2

)
χ
a,α
“
sβ− Nk

α2β

”χ∗a′,αc′
=

∑
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

α

c′∈Z 2k
α

D′a,a′δ(c′ = c mod 4) δ
(
c′ ≡ c mod

k

2α2

)
χa,αc χ

∗
a′,αc′

= M̃4,2[v, 1, x]

as required.

4 divides k

The case where 4 divides k is again very similar. Fix a physical invariant
M ≡ M̃ [v, z, n] where v is minimal. We write k = 22r+ε

∏l
i=1 p

2ai+1
i

∏m
j=1 q

2bj
j

with pi, qj mutually distinct odd primes, r ≥ 1 and ε ∈ {0, 1}. Note that since
v is minimal (see (3.4)) we must have v = 2r+ε

∏l
i=1 p

ai+1
i

∏m
j=1 q

bj
j and 2v2

k
=

21+ε
∏l
i=1 pi. Since z satisfies z2−1 ≡ 0 mod 2v2

k
we must have (z+1)(z−1) ≡ 0

mod 21+ε
∏l
i=1 pi. Equivalently, there exists a t such that, after relabelling the

pi, {
z + 1 ≡ 0 mod 2

∏t
i=1 pi,

z − 1 ≡ 0 mod 2
∏l
i=t+1 pi.

(4.6)

We have α = k
v = 2r

∏l
i=1 p

ai
i

∏m
j=1 q

bj
j and we set β = 2xε

∏t
i=1 pi where x is

either 0 or 1 and will be specified later. Then k
α2β = 2ε(1−x)

∏l
i=t+1 pi is an

integer, so we may perform the Zβ orbifolding given in equation (4.2) on M by
substituting in equation (3.4):

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

M
a,α
“
sβ+ Nk

α2β

”
; a′,αc′

χ
a,α
“
sβ− Nk

α2β

” χ∗a′,αc′
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=
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

δ(a′ = Jana) δ
(
c′ ≡

(
sβ +

Nk

α2β

)
z mod

2k
α2

)

× χ
a,α
“
sβ− Nk

α2β

”χ∗a′,αc′
where we have used the fact that the parameter y must be even when v is
minimal. In analogy with the previous two cases, we wish to conclude from the
equation (4.6) that

(
sβ + Nk

α2β

)
z ≡ sβ − Nk

α2β mod 2k
α2 . We have to be a little

careful with the powers of 2: since z is odd, either z − 1 or z + 1 must be a
multiple of 4. If the former we set x = 0 and if the latter, x = 1. With this
definition, it is easy to check that the desired conclusion holds and we have

Zorb =
∑

N=0,...,β−1
a=0,...,k
a′=0,...,k

∑
s∈Z 2k

αβ

c′∈Z 2k
α

δ(a′ = Jana) δ
(
c′ ≡ sβ − Nk

α2β
mod

2k
α2

)

× χ
a,α
“
sβ− Nk

α2β

”χ∗a′,αc′
=

∑
a=0,...,k
a′=0,...,k

∑
c∈Z 2k

α

c′∈Z 2k
α

δ(a′ = Jana) δ
(
c′ ≡ c mod

2k
α2

)
χa,αc χ

∗
a′,αc′

= M̃2,0[v, 1, n]

which completes the proof of proposition 4.7.1 for the simple current invariants.

The exceptional cases

When k = 10 we need to show that there is an orbifolding connecting the Ẽ10
1

invariants with those with parameters (v = 6, z = 5) and (v = 6, z = 1). But
we have already seen in table 4.1 that the orbifolding O2 acts on Ẽ10

1 [6, z] by
z ↔ −z mod 6.

When k = 28 we follow exactly the method we used for the simple current
invariants for when 4|k: we have k = 30 = 2 · 3 · 5 and v = 15. The solutions
to z2− 1 ≡ 0 mod 15 are z ∈ {1, 4, 11, 14} (see equation (3.15)), corresponding
respectively to the situations

z = 1,
{
z + 1 ≡ 0 mod 1
z − 1 ≡ 0 mod 15

}
, β = 1

z = 4,
{
z + 1 ≡ 0 mod 5
z − 1 ≡ 0 mod 3

}
, β = 5

z = 11,
{
z + 1 ≡ 0 mod 3
z − 1 ≡ 0 mod 5

}
, β = 3
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z = 14,
{
z + 1 ≡ 0 mod 15
z − 1 ≡ 0 mod 1

}
, β = 15.

In each case α = 1 and so we apply orbifolding O7 to the physical invariant
M ≡ Ẽ28[15, z, x] using equations (4.2) and (3.15):

Zorb =
∑

N=0,...,β−1
a=0,...,28
a′=0,...,28

∑
s∈Z 60

β

c′∈Z60

Ma,(sβ+ 30N
β ); a′,c′ χa,(sβ− 30N

β ) χ
∗
a′c′

=
∑

N=0,...,β−1
a=0,...,28
a′=0,...,28

∑
s∈Z 60

β

c′∈Z60

E28
a,a′δ(c

′ ≡ (sβ + 2N)x mod 4)

× δ
(
c′ ≡

(
sβ +

30N
β

)
z mod 15

)
χa,(sβ− 30N

β )χ
∗
a′c′ .

Exactly as in the simple current case, the β is carefully chosen so as to satisfy(
sβ + 30N

β

)
z ≡ sβ − 30N

β mod 15. Thus we find

Zorb =
∑

N=0,...,β−1
a=0,...,28
a′=0,...,28

∑
s∈Z 60

β

c′∈Z60

E28
a,a′δ(c

′ ≡ (sβ − 2N)x mod 4)

× δ
(
c′ ≡ sβ − 30N

β
mod 15

)
χa,(sβ− 30N

β )χ
∗
a′c′

=
∑

a=0,...,28
a′=0,...,28

∑
c∈Z60
c′∈Z60

E28
a,a′δ(c

′ ≡ cx mod 4) δ(c′ ≡ c mod 15) χac χ∗a′c′

= Ẽ28[15, 1, x].

This completes the proof of proposition 4.7.1. We summarise the result in the
next section.

4.8 Proof of the main theorem

We are now ready to prove the main theorem. We restate the theorem here in
a little more detail. For notation, see section 3.2.

Theorem 4.8.1. • Let k be odd and let M be a simple current invariant at
level k. Then there exists a chain of orbifoldings mapping M to Ak ⊗M
where Ak is the diagonal ŝu(2) invariant at level k and the non-zero values
of M are given by

M ck
v ,

c′k
v

= 1 ⇐⇒ c′ ≡ c mod
2v2

k

where v is the smallest divisor of k satisfying v2

k
∈ Z.
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• Let 4|k and let M be a simple current invariant at level k. Then there
exists a chain of orbifoldings mapping M to Ak ⊗ M where Ak is the
diagonal ŝu(2) invariant at level k and the non-zero values of M are given
by

M ck
v ,

c′k
v

= 1 ⇐⇒ c′ ≡ c mod
2v2

k

where v is the smallest divisor of k
2 satisfying v2

k
∈ Z.

• Let 4|k and let M be a simple current invariant at level k. Then there
exists a chain of orbifoldings mapping M to D′k⊗M where D′k is the level
k D invariant in the ŝu(2) A-D-E classification, and the non-zero values
of M are given by

M ck
2v ,

c′k
2v

= 1 ⇐⇒ c′ ≡ c mod
8v2

k

where v is the smallest divisor of k
2 satisfying 2v2

k
∈ Z.

• Let M be an exceptional invariant at level k = 10. Then there exists a
chain of orbifoldings mapping M to E10 ⊗M where E10 is the exceptional
ŝu(2) invariant at level 10 and the non-zero values of M are given by

M2c,2c′ = 1 ⇐⇒ c′ ≡ c mod 6.

• Let M be an exceptional invariant at level k = 16. Then there exists a
chain of orbifoldings mapping M to E16 ⊗M where E16 is the exceptional
ŝu(2) invariant at level 16 and the non-zero values of M are given by

M3c,3c′ = 1 ⇐⇒ c′ ≡ c mod 4.

• Let M be an exceptional invariant at level k = 28. Then there exists a
chain of orbifoldings mapping M to E28 ⊗M where E28 is the exceptional
ŝu(2) invariant at level 28 and M is given by

M c,c′ = 1 ⇐⇒ c′ ≡ c mod 60.

Proof. The requisite orbifoldings were constructed in the previous sections.
Given a physical invariant M we use proposition 4.5.1 to map M into one
of the families M̃0, M̃2,0, M̃4,2, Ẽ10

1 , Ẽ16
2 or Ẽ28 depending on the value of k and

whether M is a simple current invariant. We can then apply proposition 4.6.1 to
map v to the smallest possible value it can take in that family, while leaving the
other parameters unchanged. Proposition 4.7.1 sends z to 1 if k is even or 2z ≡ 1
if k is odd. Finally, if necessary, we use the orbifolding O1 of subsection 4.3.1 to
fix n = 0 when k is odd or 4|k; or to fix x = 1 when 4|k. The resulting partition
functions are given explicitly above using equations (3.3)–(3.15).
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4.9 Existence of the N = 2 minimal models

We would like to conclude that our main theorem implies the existence of a
unitary N = 2 minimal model for every possible partition function in Gannon’s
list (see section 3.2). We caution the reader that we cannot yet make this
argument fully rigorous: it depends on ideas in the physics literature that are
derived from string theory and might not be rigorously applicable to conformal
field theory. We therefore present our conclusions in the form of a ‘physics
theorem’.

‘Physics Theorem’ 4.9.1. To each of the candidate partition functions given
in Gannon’s list (see section 3.2) there corresponds a fully-fledged superconfor-
mal field theory.

Proof. The theorem proved in the last section showed that every partition func-
tion is obtained from one of a handful of possible partition functions by a chain
of orbifoldings by cyclic groups. Since orbifoldings by solvable groups can be in-
verted (see e.g. [33]) it follows that we can obtain by a chain of orbifoldings any
given partition function from the A model (if it is a simple current invariant),
or from the E6, E7, E8 model (if it is an exceptional invariant with k = 10, 16, 28
respectively).

Up to now, the orbifoldings we have constructed have been given entirely in
terms of the partition function. In order to have chance of getting an orbifold
SCFT we must impose the level-matching conditions [61, 14]; that is, we must
check that the spin h−h of the fields in the orbifold theory remain at worst half-
integral and also that we do not destroy semi-locality. We saw in sections 4.3-4.7
that in all the orbifolds we consider, we obtain another partition function from
Gannon’s list. But we know from equation (2.26) that all states counted by the
partition functions have integral spin, and that the spins of states in the full
Hilbert space differ at worst by a half-integer. We also checked in theorem 3.7.2
that states appearing in the full Hilbert space of a theory are at worst mutually
semi-local.

Two points remain to be shown: firstly that A model and exceptional models
E6,7,8 are fully-fledged minimal models; and secondly, that the level-matching
conditions are sufficient to ensure that an orbifold theory of an SCFT is again
a fully-fledged SCFT. To address the first point, the OPE coefficients of the A
model were calculated in [49] using the relation between the parafermion fields
with those of the ŝu(2) WZW models [70]. The OPE coefficients of the excep-
tional models should in principal be calculable using the free field construction
of e.g. [18].7

On the second point, we turn to the string theory literature. The theory
of orbifolds was first described in [13, 14]. In [12] a method for calculating
the n-point (correlation) functions of the fields of the twisted sector is given,
providing the level-matching conditions are satisfied.

7The question then arises: can the OPE coefficients of all minimal models be calculated us-
ing a free field realisation, or perhaps directly from the parafermion construction? In principle,
either is possible.
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Chapter 5

Analysis of the simple
current invariants

5.1 The Kreuzer-Schellekens construction

In [45] it is shown that all simple current invariants that obey both 1-loop and
higher-genus modular invariance can be obtained as orbifolds of the diagonal
physical invariant by a subgroup of the centre. It is conjectured that all simple
current physical invariants can be obtained in this way; that is, it is conjectured
that the constraint of higher-genus modular invariance is in fact superfluous.
We will analyse the solutions of Gannon’s classification to show that this is
indeed the case for the unitary N = 2 minimal models.

5.1.1 k odd

One reads off immediately from Gannon’s classification that every physical in-
variant with k odd is a simple current invariant. Furthermore, following [45],
precisely one physical invariant can be constructed as an orbifold for each sub-
group of the effective centre C ∼= Z2k (there is no discrete torsion in this case,
since subgroups of Z2k are cyclic).

One can check using induction on the number of prime factors that the
number of subgroups of Zq, equal to the number of divisors of q, is d(q) :=∏l
i=1(1 + ni) where q is written q =

∏l
i=1 p

ni
i for distinct primes pi. The

following lemma establishes that the number of physical invariants at each odd
level k (see equation (3.3)) is precisely the number of subgroups of Z2k, showing
that the Schellekens-Kreuzer orbifold construction does indeed give all physical
invariants when the level k is odd.

Lemma 5.1.1. Let k be odd. Then the number of solutions (v, z, n) ∈ {1, . . . , k}
×{1, . . . , v

2

k
} × {0, 1} to the equations

v2

k
, kv ∈ Z, 4z2 ≡ 1 mod v2

k
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is equal to d(2k).

Proof. Write k =
∏l
i=1 p

2ai+δi
i where pi are distinct odd primes and δi ∈ {0, 1}.

Write v =
∏l
i=1 p

bi
i . Then v2

k
∈ Z and k

v ∈ Z imply that each bi can take

any value in {ai + δi, . . . , 2ai + δi}. So v2

k
can take on any value of the form∏l

i=1 p
2ci+δi
i where ci ∈ {0, . . . , ai}. So the number of solutions N for (v, z, n)

is given by

N = 2
a1∑
c1=0

. . .

al∑
cl=0

σ

(
l∏
i

p2ci+δi
i

)

where σ(q) is the number of solutions to 4z2 ≡ 1 mod q with z ∈ {1, . . . , q}.
We now calculate σ(q) for q =

∏m
i=1 p

di
i where the pi are distinct odd primes

and di ≥ 1. Suppose z is a solution of (2z+1)(2z−1) ≡ 0 mod
∏m
i=1 p

di
i . Since

2z + 1 and 2z − 1 cannot both vanish modulo p for any odd prime, there must
exist a partition of the m primes pi such that (possibly after relabelling)

2z + 1 ≡ 0 mod
t∏
i=1

pdii , 2z − 1 ≡ 0 mod
m∏

i=t+1

pdii .

Writing A =
∏t
i=1 p

di
i and B =

∏m
i=t+1 p

di
i we see that z = k−1

2 +rA = k+1
2 −sB

for some r, s ∈ Z. Thus rA+ sB = 1, which has a unique solution for r mod B
and s mod A by Euclid’s algorithm. Since there are 2m choices for the partition,
σ
(∏m

i=1 p
di
i

)
= 2m.

Taking care to note when 2ci + δi vanishes, we find that

N = 2
a1∑
c1=0

. . .

al∑
cl=0

(
l∏
i=1

2δ(2ci+δi>0)

)

= 2

[
a1∑
c1=0

2δ(2c1+δ1>0)

]
. . .

[
al∑
cl=0

2δ(2cl+δl>0)

]
= 2(2a1 + δ1 + 1) . . . (2a1 + δ1 + 1)

= 2
l∏
i=1

(1 + 2ai + δi)

= d(2k).

5.1.2 4 divides k

We now turn our attention to the case when 4|k. Again we can immediately
read off from Gannon’s classification that M̃4,0, M̃4,1, M̃4,2 and M̃4,3 are all
simple current invariants.
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The subgroups of the effective centre Ck ∼= Z2 × Z2k are given by

Z2 × Zl ∼= Z2l, 2l|k
Z2 × Z2l, l|k

{0} × Zl ∼= Zl, l|2k
〈(J, kl )〉 ∼= Z2l, l|k.

We can define an orbifold for each subgroup of the centre and for each choice
of discrete torsion associated to that subgroup. For a cyclic group Zq there
is no choice to make; for a group Z2 × Z2q there are two degrees of freedom.
Writing τ(G) for the number of degrees of freedom coming from discrete torsion
associated to the group G, we find the number of simple current invariants
obtained via an orbifold of the diagonal invariant when 4|k is

N =
∑

G≤Z2×Z2k

τ(G)

= d

(
k

2

)
+ 2d(k) + d(2k) + d(k)

= 5d(k)

where d(q), as above, is the number of divisors of q.
The following lemma shows that if 4|k then the number of simple current

physical invariants is equal to N = 5d(k), the number of orbifolds of the diagonal
invariant, so the Schellekens-Kreuzer construction does find all simple currents
invariants when 4|k.

Lemma 5.1.2. Let 8|k+4. Then the number of solutions (v, z, n,m)∈{1, . . . , k2}
×{1, . . . , 2v2

k
} × {0, 1}2 to the equations

2v2

k
, k2v ∈ Z, z2 ≡ 1 mod 2v2

k

is equal to 2d(k).
Let 8|k. Then the number of solutions (v, z, x, y) ∈ {1, . . . , k}×{1, . . . , v

2

k
}×

{1, 3}2 to the equations

v2

k
, k

v ∈ Z, z ≡ k
8 mod 2, 4z2 ≡ 1 mod v2

2k

is equal to 2d(k).
Let 4|k. Then the number of solutions (v, z, x) ∈ {1, . . . , k2}×{1, . . . ,

2v2

k
}×

{1, 3} to the equations

2v2

k
, k

2v ∈ Z, z2 ≡ 1 mod 2v2

k

is equal to d(k).
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Let 4|k. Then the number of solutions (v, z, n) ∈ {1, . . . , k2}×{1, . . . ,
8v2

k
}×

{0, 1} to the equations

2v2

k
, k2v ∈ Z, z2 ≡ 1 mod 4v2

k

is equal to 2d(k).

Proof. We first tackle the third and fourth cases. Write k = 2
∏l
i=1 p

2ai+δi
i

where pi are distinct odd primes and δi ∈ {0, 1}. The values of v are the
same in both cases: just as in the previous lemma, we write v =

∏l
i=1 p

bi
i where

bi ∈ {ai+δi, . . . , 2ai+δi}. So 2v2

k
can take on any value of the form

∏l
i=1 p

2ci+δi
i

where ci ∈ {0, . . . , ai}. So the number of solutions N3, N4 in each case are given
by

Nj = 2
a1∑
c1=0

. . .

al∑
cl=0

σj

(
l∏
i

p2ci+δi
i

)
, j = 3, 4.

where σ3(q) is the number of solutions to z2 ≡ 1 mod q, z ∈ {1, . . . , q} and σ4(q)
is the number of solutions to z2 ≡ 1 mod 2q, z ∈ {1, . . . , 4q}.

Since q is odd, we have z2 ≡ 1 mod 2q ⇐⇒ z2 ≡ 1 mod q, z odd. If z2 ≡ 1
mod q then precisely one of z and z + q are odd. So there are σ3(q) solutions
to z2 ≡ 1 mod 2q in z ∈ {1, . . . , 2q}. Also if z satisfies the equation for σ4(q)
then so does z ± 2q. Thus σ4(q) = 2σ3(q).

It remains to calculate σ3(q). Since q is odd, z 7→ 2z mod 2 is a bijection
on Zq. Thus we can read off from the proof of the previous lemma that for
q =

∏m
i=1 p

di
i with pi distinct odd primes and di ≥ 1 we have σ3(q) = 2m. Thus,

taking care to note when 2ci + δi vanishes, we have

N3 = 2
ai∑
c1=0

. . .

al∑
cl=0

2δ(2ci+δi>0)

= 2(2a1 + δ1 + 1) . . . (2al + δl + 1)

= d(k),

N4 = 2d(k).

Next we look at the first case. Supposing 8|k + 4, exactly the same values
of v, z occur as in the third case, and there are 4 choices of n,m ∈ Z2. So
N1 = 2d(k).

Finally, the second case. Let 8|k. As before we write k = 2
∏l
i=1 p

2a1+δi
i .

Then v2

2k
is of the form

∏l
i=1 p

2ci+δi
i where ci ∈ {0, . . . , ai}. Thus

N2 = 4
a1∑
c1=0

. . .

al∑
cl=0

σ2

(
l∏
i

p2ci+δi
i

)
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where σ2(q) is the number of solutions to 4z2 ≡ 1 mod q with z ≡ k
8 mod 2 and

z ∈ {1, . . . , 2q}. It is clear that σ2(q) is also equal to the number of solutions
to 4z2 ≡ 1 mod q with z ∈ {1, . . . , q} since precisely one of z and z + q has the
same parity as k

8 . In the proof of the first lemma, this number was found to be
2m where q =

∏m
i=1 p

di
i for di ≥ 1. Thus

N2 = 4
ai∑
c1=0

. . .

al∑
cl=0

l∏
i=1

2δ(2ci+δi>0)

= 2d(k).

5.1.3 4 divides k + 2

As in the previous cases, every physical invariant with 4|k+2 is a simple current
invariant.

Write k = 2mp where p is odd and m ≥ 2. Then the subgroups of Z2 × Zk
are given by

Z2 × Zl ∼= Z2l, l|p
Z2 × Z2l, 2l|k

{0} × Zl ∼= Zl, l|k
〈(J, k2l )〉 ∼= Z2l, 2l|k.

Writing τ(G) for the number of degrees of freedom coming from discrete torsion
of a subgroup G of Z2×Zk we find that the number of possible orbifolds of the
diagonal partition function is

N =
∑

G≤Z2×Zk

τ(G)

= d(p) + 2d
(
k

2

)
+ d(k) + d

(
k

2

)
= (1 + 2m+ (m+ 1) +m)d(p)
= 2(2m+ 1)d(p)

= 2
(
d(k) + d

(
k

2

))
The following lemma shows that this is precisely the number of simple current
invariants when the level k satisfies 4|k+2, proving that the Schellekens-Kreuzer
orbifolds do indeed find all the physical invariants at these levels.

Lemma 5.1.3. Let 4|k + 2 and write k = 22r+εp where ε ∈ {0, 1}, r > 0 and p
is odd.

The number of solutions (v, z, n) ∈ {1, . . . , k2} × {1, . . . ,
2v2

k
} × {0, 1} to the

equations

v2

k
, k

2v ∈ Z, z2 ≡ 1 mod 2v2

k
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is equal to 2(4r − 3 + ε)d(p).
The number of solutions (v, z, n) ∈ {1, . . . , k2} × {1, . . . ,

2v2

k
} × {0, 1} to the

equations

2v2

k
∈ 2Z + 1, k

2v ∈ Z, z2 ≡ 1 mod 2v2

k

is equal to 2εd(p).
The number of solutions (v, z, n,m) ∈ {1, . . . , k} × {1, . . . , 2v2

k
} × {0, 1}2 to

the equations

v2

k
∈ Z, k

v ∈ 2Z + 1, z2 ≡ 1 mod 4v2

k

is equal to 8d(p).

Proof. We tackle the second claim first: note that 2v2

k
is odd if and only if ε is

1. If ε is equal to 1 then simply follow the proof of the third case in lemma 2 to
find 2d(p) solutions.

Next we prove the third claim. Since k
v is odd, v2

k
must be of the form

22r+ε
∏l
i=1 p

2ci+δi
i where as usual ci ∈ {0, . . . , ai}. We need to count the

number of solutions to z2 ≡ 1 mod 22r+2+ε
∏m
i=1 p

di
i where di ≥ 1 and z ∈

{1, . . . , 22r+1+ε
∏m
i=1 p

di
i }. After possibly relabelling the pi’s, solving this equa-

tion is equivalent to solving
z ≡ 1 mod

∏t
i=1 p

di
i

and
z ≡ −1 mod

∏m
i=t+1 p

di
i

 ,

 z ≡ 1 mod 22r+1+ε

or
z ≡ −1 mod 22r+1+ε

 .

Since r > 0, there are 2m+1 such sets of distinct equations, and one uses the
standard arguments to show that each gives a unique solution in the range
z ∈ {1, . . . , 22r+1+ε

∏m
i=1 p

di
i }. Thus the total number of solutions is

N = 4
ai∑
c1=0

. . .

al∑
cl=0

2
l∏
i=1

2δ(2ci+δi>0)

= 8d(p).

Finally we tackle the first claim. v2

k
can take on the values 22c0+ε

∏l
i=1 p

2ci+δi
i

where c0 ∈ {0, . . . , r − 1} and ci ∈ {0, . . . , ai}. We need to find the number of
solutions σ(q) to z2 ≡ 1 mod q with z ∈ {1, . . . , q} for various values of q. As
we saw in the last claim, if q = 2s

∏m
i=1 p

di
i for s ≥ 4 and di ≥ 1 then there are

2m+1 solutions for z in the range {1, . . . , q2}. So for z in the range {1, . . . , q}
there are 2m+2 solutions and σ(q) = 2m+2. Now suppose q = 2s

∏m
i=1 p

di
i where

s ∈ {1, 2, 3} and di ≥ 1. Then

z2 ≡ 1 mod q ⇐⇒ z odd and z2 ≡ 1 mod
m∏
i=1

pdii ,
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which has precisely 2m solutions in {1, . . . , 2
∏m
i=1 p

di
i }. So σ(q) = 2m+s−1.

Thus taking account of when 2ci + δi vanishes and when 2c0 + ε is less than 3
we have

N = 2
r−1∑
c0=0

a1∑
c1=0

. . .

al∑
cl=0

σ

(
22c0+ε+1

l∏
i=1

p2ci+δi
i

)

= 2

[
r−1∑
c0=0

22δ(2c0+ε>1)+δ(2c0+ε=1)

]
ai∑
c1=0

. . .

al∑
cl=0

l∏
i=1

2δ(2ci+δi>0)

= 2(4(r − 1) + ε+ 1)
l∏
i=1

(2ai + δi + 1)

= 2(4r − 3 + ε)d(p).

5.1.4 Simple current classification

These counting results coupled with the explicit orbifolds given by Schellekens
and Kreuzer [45] can be summarised in the following theorem:

Theorem 5.1.4. Set k := k + 2. Then every simple current unitary N = 2
minimal partition function at level k is realised via an orbifold (possibly with
discrete torsion) of the diagonal partition function by a subgroup of the effective
centre

C ∼=


Z2k if k is odd,
Z2 × Z2k if 4 divides k,
Z2 × Zk if 4 divides k + 2.

The number of simple current invariants at each level k is given by

N(k) =


2d(k) if k is odd,
5d(k) if 4 divides k,

2d(k) + 2d
(
k
2

)
if 4 divides k.

where d(n) is the number of divisors of n.

5.2 Generating functions for the simple current
invariants

In theorem 5.1.4 we found the number of simple current invariants for each level
k. For convenience, we define N(−2) = 1, N(−1) = 2 and N(0) = 10. This
information can then be encoded in the generating function

G(q) :=
∞∑

k=−2

N(k)qk
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= 2
∑
k

d(k)qk + 2
∑
2|k

d

(
k

2

)
qk + 2

∑
4|k

d(k)qk

where the sums are over k ≥ −2. This is equal to

1
2
(
E1(q) + 3E1(q2)− 4E1(q4) + 2E1(q8)

)
where E1(q) is defined1 for q ∈ C by

E1(q) = 1 + 4
∞∑
n=1

d(n)qn.

It is called E1 by analogy to the normalised Eisenstein series which, for even k,
is defined by

Ek(τ) = 1− 2k
Bk

∞∑
n=1

σk−1(n)qn,

where τ lies in the upper half plane and q = e2πiτ . Here the σk(n) function is
the sum of the k-th powers of the divisors of n and Bk is the k-th Bernoulli
number. Note that σ0(n) = d(n) and B1 = − 1

2 . The Eisenstein series E2k

with k ≥ 2 are modular forms. We have no explanation as to why such a neat
generating function should exist for the simple current invariants in the minimal
model series, and why it should be related to modular forms.

A further curiosity is motivated by an observation by Hecke [39]. He found
a connection between modular forms and the Dirichlet series which shares the
same coefficients. We are thus motived to consider

F (s) :=
∞∑
n=1

N(n− 2)
ns

= 2ζ(s)2
(
1 + 3 · 2−s − 4 · 4−s + 2 · 8−s

)
where we used the identity

∞∑
n=1

d(n)
ns

= ζ(s)2,

and ζ is the Riemann zeta function. Again, we can offer no explanation of why
the Riemann zeta function should show up at all. The next logical step of inves-
tigation would be to see if a similar phenomenon occurs for other classifications
of conformal fields theories. Unfortunately, not many of these are completely
known, but the two best known examples are the A −D − E classifications of
the ŝu(2)k WZW models and the N = 0 minimal models [5]. In these cases, the

1We will soon consider the substitution q = e2πiτ for τ in the upper-half plane, so one
should really think of G(q) and E1(τ) as formal power series.
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A and D models are simple current invariants, so there is one model when k is
odd and two when k is even. So the generating function for the simple current
invariants in both cases is

G(q) :=
∞∑
k=0

N(k)qk

=
1

1− q
+

1
1− q2

and the associated Dirichlet series is

F (s) :=
∞∑
n=1

N(n)
ns

= ζ(s)(1 + 2−s).

The appearance of the Riemann zeta function in this context perhaps merits
further attention.
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Chapter 6

Conclusions

The main result of this thesis is theorem 4.9.1, in which we show the existence
of a unitary N = 2 minimal model associated to each of the candidate partition
functions in Gannon’s list. The bulk of the proof is the construction of a chain
of orbifoldings from any given partition function to one of the known A,E6, E7

or E8 models (theorem 4.8.1). We point out once more that the final step of
the proof entails the application of results from the string theory literature to
deduce that the orbifold of a fully fledged SCFT is again a fully-fledged SCFT,
which might not meet the strict mathematical standards of rigour.

Along the way to this result, we proved some other results regarding the
minimal models: firstly, we found a simple proof of the superconformal version
of Verlinde’s formula (theorem 2.4.2) using simple current techniques, circum-
venting the technical and long-winded proof of Wakimoto [64].

Next we found an interpretation of the two possible projectors from the full
Hilbert space of a theory to a modular invariant subspace in the case where the
level k is odd (theorem 3.5.1). The projections are defined by taking the states
corresponding to one of the two even sublattices of the charge lattice.

We presented the explicit list of Gannon’s partition functions in section 3.2,
correcting a couple of minor errors. Armed with this list, we could perform non-
trivial checks on all the candidate theories. Two of these were carried out in
section 3.7. The first test was that the fusion rules did not preclude the existence
of a non-trivial OPE à la Gepner [32]. This was theorem 3.7.1. In theorem 3.7.2
we checked that the fields in all the candidate theories were mutually semi-local.

In section 5.1 we counted the simple current invariants. The results enabled
us to verify the hypothesis of Kreuzer and Schellekens [45], that all simple
current invariants are obtained by orbifolds of the A-model by subgroups of the
effective centre, without any recourse to extra assumptions regarding higher-
genus modular invariance.

Finally in section 5.2 we noted a strange appearance of modular-like func-
tions and the Riemann zeta function related to the generating function of the
simple current invariants in the unitary N = 2 minimal models and others,
which merits further attention.
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