735 research outputs found

    Neuroimaging phenotypes of CSF1R-related leukoencephalopathy: Systematic review, meta-analysis, and imaging recommendations

    Full text link
    Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare but fatal microgliopathy. The diagnosis is often delayed due to multifaceted symptoms that can mimic several other neurological disorders. Imaging provides diagnostic clues that help identify cases. The objective of this study was to integrate the literature on neuroimaging phenotypes of CSF1R-related leukoencephalopathy. A systematic review and meta-analysis were performed for neuroimaging findings of CSF1R-related leukoencephalopathy via PubMed, Web of Science, and Embase on 25 August 2021. The search included cases with confirmed CSF1R mutations reported under the previous terms hereditary diffuse leukoencephalopathy with spheroids, pigmentary orthochromatic leukodystrophy, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In 78 studies providing neuroimaging data, 195 cases were identified carrying CSF1R mutations in 14 exons and five introns. Women had a statistically significant earlier age of onset (p = 0.041, 40 vs 43 years). Mean delay between symptom onset and neuroimaging was 2.3 years. Main magnetic resonance imaging (MRI) findings were frontoparietal white matter lesions, callosal thinning, and foci of restricted diffusion. The hallmark computed tomography (CT) finding was white matter calcifications. Widespread cerebral hypometabolism and hypoperfusion were reported using positron emission tomography and single-photon emission computed tomography. In conclusion, CSF1R-related leukoencephalopathy is associated with progressive white matter lesions and brain atrophy that can resemble other neurodegenerative/-inflammatory disorders. However, long-lasting diffusion restriction and parenchymal calcifications are more specific findings that can aid the differential diagnosis. Native brain CT and brain MRI (with and without a contrast agent) are recommended with proposed protocols and pictorial examples are provided

    A blockchain protocol for authenticating space communications between satellites constellations

    Get PDF
    Blockchain has found many applications, apart from Bitcoin, in different fields and it has the potential to be very useful in the satellite communications and space industries. Decentralized and secure protocols for processing and manipulating space transactions of satellite swarms in the form of Space Digital Tokens (SDT) can be built using blockchain technology. Tokenizing space transactions using SDTs will open the door to different new blockchain-based solutions for the advancement of constellation-based satellite communications in the space industry. Developing blockchain solutions using smart contracts could be used in securely authenticating various P2P satellite communications and transactions within/between satellite swarms. To manage and secure these transactions, using the proposed SDT concept, this paper suggested a blockchain-based protocol called Proof of Space Transactions (PoST). This protocol was adopted to manage and authenticate the transactions of satellite constellations in a P2P connection. The PoST protocol was prototyped using the Ethereum blockchain and experimented with to evaluate its performance using four metrics: read latency, read throughput, transaction latency, and transaction throughput. The simulation results clarified the efficiency of the proposed PoST protocol in processing and verifying satellite transactions in a short time according to read and transaction latency results. Moreover, the security results showed that the proposed PoST protocol is secure and efficient in verifying satellite transactions according to true positive rate (TPR), true negative rate (TNR), and accuracy metrics. These findings may shape a real attempt to develop a new generation of Blockchain-based satellite constellation systems

    Quantum interferometry with three-dimensional geometry

    Get PDF
    Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include "tritter" and "quarter" as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonic.Comment: 7 pages (+4 Supplementary Information), 5 figure

    Radiosurgery and fractionated stereotactic body radiotherapy for patients with lung oligometastases

    Get PDF
    Background: Patients with oligometastatic disease can potentially be cured by using an ablative therapy for all active lesions. Stereotactic body radiotherapy (SBRT) is a non-invasive treatment option that lately proved to be as effective and safe as surgery in treating lung metastases (LM). However, it is not clear which patients benefit most and what are the most suitable fractionation regimens. The aim of this study was to analyze treatment outcomes after single fraction radiosurgery (SFRS) and fractionated SBRT (fSBRT) in patients with lung oligometastases and identify prognostic clinical features for better survival outcomes. Methods: Fifty-two patients with 94 LM treated with SFRS or fSBRT between 2010 and 2016 were analyzed. The characteristics of primary tumor, LM, treatment, toxicity profiles and outcomes were assessed. Kaplan-Meier and Cox regression analyses were used for estimation of local control (LC), overall survival (OS) and progression-free survival. Results: Ninety-four LM in 52 patients were treated using SFRS/fSBRT with a median of 2 lesions per patient (range: 1-5). The median planning target volume (PTV)-encompassing dose for SFRS was 24 Gy (range: 17-26) compared to 45 Gy (range: 20-60) in 2-12 fractions with fSBRT. The median follow-up time was 21 months (range: 3-68). LC rates at 1 and 2 years for SFSR vs. fSBRT were 89 and 83% vs. 75 and 59%, respectively (p = 0.026). LM treated with SFSR were significantly smaller (p = 0.001). The 1 and 2-year OS rates for all patients were 84 and 71%, respectively. In univariate analysis treatment with SFRS, an interval of ≥12 months between diagnosis of LM and treatment, non-colorectal cancer histology and BED 70% and time to first metastasis ≥12 months. There was no grade 3 acute or late toxicity. Conclusions: Longer time to first metastasis, good KPS and N0 predicted better OS. Good LC and low toxicity rates were achieved after short SBRT schedules

    Tumor radiomic features complement clinico-radiological factors in predicting long-term local control and laryngectomy free survival in locally advanced laryngo-pharyngeal cancers

    Get PDF
    OBJECTIVE: To study if pre-treatment CT texture features in locally advanced squamous cell carcinoma of laryngo-pharynx can predict long-term local control and laryngectomy free survival (LFS). METHODS: Image texture features of 60 patients treated with chemoradiation (CTRT) within an ethically approved study were studied on contrast-enhanced images using a texture analysis research software (TexRad, UK). A filtration-histogram technique was used where the filtration step extracted and enhanced features of different sizes and intensity variations corresponding to a particular spatial scale filter (SSF): SSF = 0 (without filtration), SSF = 2 mm (fine texture), SSF = 3-5 mm (medium texture) and SSF = 6 mm (coarse texture). Quantification by statistical and histogram technique comprised mean intensity, standard-deviation, entropy, mean positive pixels, skewness and kurtosis. The ability of texture analysis to predict LFS or local control was determined using Kaplan-Meier analysis and multivariate cox model. RESULTS: Median follow-up of patients was 24 months (95% CI:20-28). 39 (65%) patients were locally controlled at last follow-up. 10 (16%) had undergone salvage laryngectomy after CTRT. For both local control & LFS, threshold optimal cut-off values of texture features were analyzed. Medium filtered-texture feature that were associated with poorer laryngectomy free survival were entropy ≥4.54, (p = 0.006), kurtosis ≥4.18; p = 0.019, skewness ≤-0.59, p = 0.001, and standard deviation ≥43.18; p = 0.009). Inferior local control was associated with medium filtered features entropy ≥4.54; p 0.01 and skewness ≤ - 0.12; p = 0.02. Using fine filters, entropy ≥4.29 and kurtosis ≥-0.27 were also associated with inferior local control (p = 0.01 for both parameters). Multivariate analysis showed medium filter entropy as an independent predictor for LFS and local control (p < 0.001 & p = 0.001). CONCLUSION: Medium texture entropy is a predictor for inferior local control and laryngectomy free survival in locally advanced laryngo-pharyngeal cancer and this can complement clinico-radiological factors in predicting prognosticating these tumors. ADVANCES IN KNOWLEDGE: Texture features play an important role as a surrogate imaging biomarker for predicting local control and laryngectomy free survival in locally advanced laryngo-pharyngeal tumors treated with definitive chemoradiation

    Exploiting Inter- and Intra-Memory Asymmetries for Data Mapping in Hybrid Tiered-Memories

    Full text link
    Modern computing systems are embracing hybrid memory comprising of DRAM and non-volatile memory (NVM) to combine the best properties of both memory technologies, achieving low latency, high reliability, and high density. A prominent characteristic of DRAM-NVM hybrid memory is that it has NVM access latency much higher than DRAM access latency. We call this inter-memory asymmetry. We observe that parasitic components on a long bitline are a major source of high latency in both DRAM and NVM, and a significant factor contributing to high-voltage operations in NVM, which impact their reliability. We propose an architectural change, where each long bitline in DRAM and NVM is split into two segments by an isolation transistor. One segment can be accessed with lower latency and operating voltage than the other. By introducing tiers, we enable non-uniform accesses within each memory type (which we call intra-memory asymmetry), leading to performance and reliability trade-offs in DRAM-NVM hybrid memory. We extend existing NVM-DRAM OS in three ways. First, we exploit both inter- and intra-memory asymmetries to allocate and migrate memory pages between the tiers in DRAM and NVM. Second, we improve the OS's page allocation decisions by predicting the access intensity of a newly-referenced memory page in a program and placing it to a matching tier during its initial allocation. This minimizes page migrations during program execution, lowering the performance overhead. Third, we propose a solution to migrate pages between the tiers of the same memory without transferring data over the memory channel, minimizing channel occupancy and improving performance. Our overall approach, which we call MNEME, to enable and exploit asymmetries in DRAM-NVM hybrid tiered memory improves both performance and reliability for both single-core and multi-programmed workloads.Comment: 15 pages, 29 figures, accepted at ACM SIGPLAN International Symposium on Memory Managemen
    • …
    corecore