165 research outputs found

    Peptide Hydrolysis, Amino Acid Oxidation, and Nitrogen Uptake in Communities Seasonally Dominated by Aureococcus Anophagefferens

    Get PDF
    Elevated levels of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) are among the factors implicated in the initiation of algal blooms. However, the degree to which phytoplankton augment their autotrophic metabolism with heterotrophic uptake of organic carbon that is associated with DON is unknown. We evaluated the relative importance of peptide hydrolysis, amino acid oxidation, and amino acid uptake over a seasonal cycle in an embayment on Long Island, New York, that had high concentrations of dissolved organic matter (DOM) and a bloom of the brown tide pelagophyte, Aureococcus anophagefferens. Amino acids were a significant component (up to 50%) of the total N uptake, particularly during the late summer. About half of the associated amino acid C was also taken up. Amino acid oxidation rates were an order of magnitude lower than free amino acid uptake rates, but still supplied up to 32.5% of the NH4+ taken up. Up to 75% of the amino acid oxidation was in the bacterial size fraction (\u3c1.2 μm), and rates were significantly correlated with bacterial densities. Peptide hydrolysis rates were high, and most (up to 72%) occurred in the brown tide size fraction (1.2–5 μm). The high rates of peptide hydrolysis and amino acid uptake measured in cultures of A. anophagefferens confirm that this species can readily hydrolyze peptides and take up N and C from amino acids. Laboratory findings and size-fractionation studies in the field suggest that A. anophagefferens plays a major role in consumption of both C and N from DOM

    Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter

    Get PDF
    Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5–22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis

    De novo assembly of Aureococcus anophagefferens transcriptomes reveals diverse responses to the low nutrient and low light conditions present during blooms

    Get PDF
    Transcriptome profiling was performed on the harmful algal bloom-forming pelagophyte Aureococcus anophagefferens strain CCMP 1850 to assess responses to common stressors for dense phytoplankton blooms: low inorganic nitrogen concentrations, low inorganic phosphorus concentrations, low light levels, and a replete control. The de novo assemblies of pooled reads from all treatments reconstructed ~54,000 transcripts using Trinity, and ~31,000 transcripts using ABySS. Comparison to the strain CCMP 1984 genome showed that the majority of the gene models were present in both de novo assemblies and that roughly 95% of contigs from both assemblies mapped to the genome, with Trinity capturing slightly more genome content. Sequence reads were mapped back to the de novo assemblies as well as the gene models and differential expression was analyzed using a Bayesian approach called Analysis of Sequence Counts (ASC). On average, 93% of significantly upregulated transcripts recovered by genome mapping were present in the significantly upregulated pool from both de novo assembly methods. Transcripts related to the transport and metabolism of nitrogen were upregulated in the low nitrogen treatment, transcripts encoding enzymes that hydrolyze organic phosphorus or relieve arsenic toxicity were upregulated in the low phosphorus treatment, and transcripts for enzymes that catabolize organic compounds, restructure lipid membranes, or are involved in sulfolipid biosynthesis were upregulated in the low light treatment. A comparison of this transcriptome to the nutrient regulated transcriptional response of CCMP 1984 identified conserved responses between these two strains. These analyses reveal the transcriptional underpinnings of physiological shifts that could contribute to the ecological success of this species in situ: organic matter processing, metal detoxification, lipid restructuring, and photosynthetic apparatus turnover

    Marine harmful algal blooms (HABs) in the United States: History, current status and future trends

    Get PDF
    Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990–2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. (...

    A novel immunofluorescence flow cytometry technique detects the expansion of brown tides caused by Aureoumbra lagunensis to the Caribbean Sea

    Get PDF
    Author Posting. © American Society for Microbiology, 2014. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 80 (2014): 4947-4957, doi:10.1128/AEM.00888-14.During the past 3 decades, brown tides caused by the pelagophytes Aureococcus anophagefferens and Aureoumbra lagunensis have caused ecological and economic damage to coastal ecosystems across the globe. While blooms of A. lagunensis had previously been confined to Texas, in 2012, an expansive brown tide occurred on Florida's East Coast, causing widespread disruption within the Indian River and Mosquito Lagoons and generating renewed interest in this organism. A major impediment to detailed investigations of A. lagunensis in an ecosystem setting has been the absence of a rapid and reliable method for cell quantification. The combination of their small size (3 to 5 μm) and nondescript extracellular features makes identification and enumeration of these cells with conventional methods a challenge. Here we report the development of an immunological-based flow cytometry method that uses a fluorescently labeled antibody developed against A. lagunensis. This method is species specific, sensitive (detection limit of 1.5 × 103 cells ml−1), precise (1% relative standard deviation of replicated samples), and accurate (108% ± 8% recovery of spiked samples) over a wide range of cell concentrations. Furthermore, this method effectively quantifies A. lagunensis in both glutaraldehyde- and formalin-preserved samples, yields a high throughput of samples (∼35 samples h−1), and is cost-effective, making it an ideal tool for managers and scientists. This method successfully documented the recurrence of a brown tide bloom in Florida in 2013. Bloom densities were highest in June (>2.0 × 106 cells ml−1) and spanned >60 km from the Ponce de Leon inlet in the northern Mosquito Lagoon south to Titusville in the Indian River Lagoon. Low levels of A. lagunensis cells were found >250 km south of this region. This method also quickly and accurately identified A. lagunensis as the causative agent of a 2013 brown tide bloom in Guantanamo Bay, Cuba, and thus should prove useful for both quantifying the dynamics of ongoing blooms of A. lagunensis as well as documenting new outbreaks of this harmful alga.This research was funded as part of an NOAA ECOHAB Event Response grant to C.J.G. Support for D.M.A. was provided by the Woods Hole Center for Oceans and Human Health, a National Science Foundation grant (OCE-1314642), and a National Institute of Environmental Health Sciences grant (1-P01-ES021923-01)

    Virus-host relationships of marine single-celled eukaryotes resolved from metatranscriptomics

    Get PDF
    Establishing virus–host relationships has historically relied on culture-dependent approaches. Here we report on the use of marine metatranscriptomics to probe virus–host relationships. Statistical co-occurrence analyses of dsDNA, ssRNA and dsRNA viral markers of polyadenylation-selected RNA sequences from microbial communities dominated by Aureococcus anophagefferens (Quantuck Bay, NY), and diatoms (Narragansett Bay, RI) show active infections by diverse giant viruses (NCLDVs) associated with algal and nonalgal hosts. Ongoing infections of A. anophagefferens by a known Mimiviridae (AaV) occur during bloom peak and decline. Bloom decline is also accompanied by increased activity of viruses other than AaV, including (+) ssRNA viruses. In Narragansett Bay, increased temporal resolution reveals active NCLDVs with both ‘boom-and-bust’ and ‘steady-state infection’-like ecologies that include known as well as novel virus–host interactions. Our approach offers a method for screening active viral infections and develops links between viruses and their potential hosts in situ. Our observations further demonstrate that previously unknown virus–host relationships in marine systems are abundant

    Fukushima 137Cs at the base of planktonic food webs off Japan

    Get PDF
    © The Author(s), 2015. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 106 (2015): 9-16, doi:10.1016/j.dsr.2015.09.006.The potential bioaccumulation of 137Cs in marine food webs off Japan became a concern following the release of radioactive contaminants from the damaged Fukushima nuclear power plant into the coastal ocean. Previous studies suggest that 137Cs activities increase with trophic level in pelagic food webs, however, the bioaccumulation of 137Cs from seawater to primary producers, to zooplankton has not been evaluated in the field. Since phytoplankton are frequently the largest component of SPM (suspended particulate matter) we used SPM concentrations and particle-associated 137Cs to understand bioaccumulation of 137Cs in through trophic pathways in the field. We determined particle-associated 137Cs for samples collected at 20 m depth from six stations off Japan three months after the initial release from the Fukushima nuclear power plant. At 20 m SPM ranged from 0.65 to 1.60 mg L-1 and rapidly declined with depth. The ratios of particulate organic carbon to chlorophyll a suggested that phytoplankton comprised much of the SPM in these samples. 137Cs activities on particles accounted for on average 0.04% of the total 137Cs in seawater samples, and measured concentration factors of 137Cs on small suspended particles were comparatively low (~102). However, when 137Cs in crustacean zooplankton was derived based only on modeling dietary 137Cs uptake, we found predicted and measured 137Cs concentrations in good agreement. We therefore postulate the possibility that the dietary route of 137Cs bioaccumulation (i.e., phytoplankton ingestion) could be largely responsible for the measured levels in the copepod-dominated (%) zooplankton assemblages in Japanese coastal waters. Finally, our data did not support the notion that zooplankton grazing on phytoplankton results in a biomagnification of 137Cs.This project was funded by the Gordon and Betty Moore Foundation through Grants GBMF3007 and GBMF 3423, and JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas Grant Number 24110005.2016-09-2

    Grazing and Virus-Induced Mortality of Microbial Populations Before and During the Onset of Annual Hypoxia in Lake Erie

    Get PDF
    Lake Erie is the most productive of the North American Great Lakes and experiences annual periods of hypolimnetic hypoxia with unknown consequences for the microbial food web. We established the abundances and mortality rates of microbes in Lake Erie during thermal stratification and determined how they varied with changes in bottom-water dissolved oxygen concentrations. The microbial plankton community (heterotrophic bacteria, Cyanobacteria, eukaryotic phytoplankton, nanozooplankton, microzooplankton) was quantified in surface and bottom waters along with measurements of herbivory and bacterivory rates on eukaryotic and prokaryotic picoplankton and rates of viral lysis of bacteria. High rates of grazing mortality of prokaryotic picoplankton (1.4 +/- 0.6 d(-1)) and eukaryotic algae (0.66 +/- 0.27 d(-1)) and significant correlations between microzooplankton abundances and all picoplankton populations quantified demonstrated the strong impacts of grazing on Lake Erie picoplanktonic communities. Microbial herbivory accounted for half of total phytoplankton mortality per day. Bacterivory and viral lysis turned over 85% of the heterotrophic bacterial community each day. During the onset of hypolimnetic hypoxia, abundances of ciliates and rotifers decreased significantly and herbivory was undetectable. Concurrently, bacterivory persisted at rates equal to those found in shallower oxygenated waters, and abundances of heterotrophic nanoflagellates did not change significantly. These results suggest that, during hypoxia events in Lake Erie, herbivory by microzooplankton is disrupted, but bacterivory by heterotrophic nanoflagellates persists. Finally, rates of viral lysis of heterotrophic bacteria were higher in the hypolimnion than in surface waters, suggesting that increased viral lysis may enhance regeneration of organic matter in bottom waters during hypoxic events

    The influence of anthropogenic nitrogen loading and meteorological conditions on the dynamics and toxicity of Alexandrium fundyense blooms in a New York (USA) estuary

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 9 (2010): 402-412, doi:10.1016/j.hal.2010.02.003.The goal of this two-year study was to explore the role of nutrients and climatic conditions in promoting reoccurring Alexandrium fundyense blooms in the Northport-Huntington Bay complex, NY, USA. A bloom in 2007 was short and small (3 weeks, 103 cells L-1 maximal density) compared to 2008 when the A. fundyense bloom, which persisted for six weeks, achieved cell densities >106 cells L-1 and water column saxitoxin concentrations >2.4 x 104 pmol STX eq. L-1. During the 2008 bloom, both deployed mussels (used as indicator species) and wild soft shell clams became highly toxic (1,400 and 600μg STX eq./100g shellfish tissue, respectively) resulting in the closure of shellfish beds. The densities of benthic A. fundyense cysts at the onset of this bloom were four orders of magnitude lower than levels needed to account for observed cell densities, indicating in situ growth of vegetative cells was responsible for elevated bloom densities. Experimental enrichment of bloom water with nitrogenous compounds, particularly ammonium, significantly increased A. fundyense densities and particulate saxitoxin concentrations relative to unamended control treatments. The δ15N signatures (12 to 23‰) of particulate organic matter (POM) during blooms were similar to those of sewage (10 to 30‰) and both toxin and A. fundyense densities were significantly correlated with POM δ15N (p < 0.001). These findings suggest A. fundyense growth was supported by a source of wastewater such as the sewage treatment plant which discharges into Northport Harbor. Warmer than average atmospheric temperatures in the late winter and spring of 2008 and a cooler May contributed to an extended period of water column temperatures optimal for A. fundyense growth (12 – 20ºC), and thus may have also contributed toward the larger and longer bloom in 2008. Together this evidence suggests sewage-derived N loading and above average spring temperatures can promote intense and toxic A. fundyense blooms in estuaries.This work was supported by a grant from EPA’s Long Island Sound Study, New York Sea Grant, and the New York State Department of Environmental Conservation (to CJG) and from the NOAA Sea Grant Program (Grant No. NA06OAR4170021 (R/B-177)) to DMA

    Transcriptional Shifts Highlight the Role of Nutrients in Harmful Brown Tide Dynamics

    Get PDF
    Harmful algal blooms (HABs) threaten ecosystems and human health worldwide. Controlling nitrogen inputs to coastal waters is a common HAB management strategy, as nutrient concentrations often suggest coastal blooms are nitrogen-limited. However, defining best nutrient management practices is a long-standing challenge: in part, because of difficulties in directly tracking the nutritional physiology of harmful species in mixed communities. Using metatranscriptome sequencing and incubation experiments, we addressed this challenge by assaying the in situ physiological ecology of the ecosystem destructive alga, Aureococcus anophagefferens. Here we show that gene markers of phosphorus deficiency were expressed in situ, and modulated by the enrichment of phosphorus, which was consistent with the observed growth rate responses. These data demonstrate the importance of phosphorus in controlling brown-tide dynamics, suggesting that phosphorus, in addition to nitrogen, should be evaluated in the management and mitigation of these blooms. Given that nutrient concentrations alone were suggestive of a nitrogen-limited ecosystem, this study underscores the value of directly assaying harmful algae in situ for the development of management strategies
    • …
    corecore