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Abstract

Elevated levels of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) are among the
factors implicated in the initiation of algal blooms. However, the degree to which phytoplankton augment their
autotrophic metabolism with heterotrophic uptake of organic carbon that is associated with DON is unknown. We
evaluated the relative importance of peptide hydrolysis, amino acid oxidation, and amino acid uptake over a seasonal
cycle in an embayment on Long Island, New York, that had high concentrations of dissolved organic matter (DOM)
and a bloom of the brown tide pelagophyte, Aureococcus anophagefferens. Amino acids were a significant com-
ponent (up to 50%) of the total N uptake, particularly during the late summer. About half of the associated amino
acid C was also taken up. Amino acid oxidation rates were an order of magnitude lower than free amino acid uptake
rates, but still supplied up to 32.5% of the NH taken up. Up to 75% of the amino acid oxidation was in the1

4

bacterial size fraction (,1.2 mm), and rates were significantly correlated with bacterial densities. Peptide hydrolysis
rates were high, and most (up to 72%) occurred in the brown tide size fraction (1.2–5 mm). The high rates of
peptide hydrolysis and amino acid uptake measured in cultures of A. anophagefferens confirm that this species can
readily hydrolyze peptides and take up N and C from amino acids. Laboratory findings and size-fractionation studies
in the field suggest that A. anophagefferens plays a major role in consumption of both C and N from DOM.

Increases in the occurrence of harmful algal blooms have
been attributed to dissolved organic nitrogen (DON) enrich-
ment of estuarine waters in the United States mid-Atlantic
region (Paerl 1988; Lewitus et al. 1999; Glibert et al. 2001),
including embayments on Long Island, New York (Berg et
al. 1997; Gobler and Sañudo-Wilhelmy 2001a), where the
pelagophyte Aureococcus anophagefferens has reached den-
sities in excess of 109 cells L21 (Cosper et al. 1990). Phy-
toplankton that can use dissolved organic matter (DOM) as
an N source may have a competitive advantage in organi-
cally enriched environments where dissolved inorganic N
(DIN) is in short supply. A variety of species can use dis-
solved organic N (DON) to meet their N needs (Antia et al.
1991), and heterotrophic uptake of dissolved organic C

1 Present address: Department of Ocean, Earth, and Atmospheric
Sciences, Old Dominion University, Norfolk, Virginia 23529-0276
(mmulholl@odu.edu).
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(DOC) has been observed in a number of dinoflagellates
(Lewitus and Caron 1991) and chrysophytes (Wheeler et al.
1977; Kristiansen 1990). However, the size of individual or-
ganic compounds may preclude their transport into cells.

Brown tide blooms of A. anophagefferens have been oc-
curring in estuaries of the mid-Atlantic region for nearly two
decades (Cosper et al. 1990; Bricelj and Lonsdale 1997). A.
anophagefferens can cooccur with other phytoplankton spe-
cies (Nuzzi and Waters 1989; Smayda and Villareal 1989)
but can also form fairly monospecific blooms, during which
it represents .90% of the total cell and chlorophyll biomass
(Nuzzi and Waters 1989; Bricelj and Lonsdale 1997; Gobler
and Sañudo-Wilhelmy 2001a). The scale and density of
brown tide blooms have been related to the magnitude of
preceding phytoplankton blooms and NO inputs, although2

3

populations of A. anophagefferens typically flourish only af-
ter NO concentrations have been depleted (Gobler and Sañ-2

3

udo-Wilhelmy 2001a) or in years when groundwater NO2
3

inputs are greatly reduced (LaRoche et al. 1997) and DON
is elevated relative to DIN (Lomas et al. 1996; Berg et al.
1997; Glibert et al. 2001).

Based on uptake kinetics, A. anophagefferens has a high
affinity for NH and urea but not for NO (Lomas et al.1 2

4 3

1996; Berg et al. 1997). This is similar to other species that
grow in low nutrient environments (e.g., Caperon and Meyer
1972). However, it is unclear how DON stimulates growth
of these species relative to cooccurring taxa. Culture studies
have shown that A. anophagefferens can take up organic
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Fig. 1. Map of the Quantuck Bay, Long Island, New York.

compounds (Dzurica et al. 1989), and organic carbon inputs
appear to stimulate A. anophagefferens growth rates in the
field (Gobler and Sañudo-Wilhelmy 2001b). This capacity
may supplement autotrophic C uptake from photosynthetic
CO2 fixation. However, the relative uptake of C versus N
from various DOM pools by A. anophagefferens has not
been measured.

The contribution of dissolved free amino acids (DFAAs)
and dissolved combined amino acids (DCAAs) to mixo-
trophic growth has not been broadly assessed, although these
compounds generally account for about 50% of the bacterial
N demand (Keil and Kirchman 1991, 1993; Middelboe et al.
1995) and about 25% of the bacterial C demand in estuarine
and coastal systems (Middelboe et al. 1995). While DFAA
concentrations are fairly low in marine and estuarine sys-
tems, their turnover can be quite high (Keil and Kirchman
1991; Middelboe et al. 1995), and their production has been
correlated with in situ primary productivity (Sellner and
Nealley 1997; Bronk et al. 1998). DCAA concentrations are
higher than those of DFAAs, and estuarine DCAAs can ac-
count for up to 13% of total DON (Keil and Kirchman
1991). DCAA lability can vary greatly, since DCAAs are
comprised of a mixture of peptides, proteins, and other ami-
no acids that require acid hydrolysis to release them from
their chemical or physical matrix. DFAAs are used prefer-
entially over DCAAs until concentrations and turnover times
of DFAAs become low (Keil and Kirchman 1993; Middel-
boe et al. 1995). In seawater, most microbes and phytoplank-
ton can take up only inorganic or small organic compounds
(Nikaido and Vaara 1985; Antia et al. 1991). Therefore, ex-
tracellular hydrolysis of proteins and peptides or oxidation
of amino acids is required before the N or C can be used by
organisms for growth.

A number of methods have been developed to detect pro-
teolytic activity in seawater and sediments. Peptide-like fluo-
rogenic compounds such as leucine-methylcoumarinylamide
(Leu-MCA) have been used to measure aminopeptidase ac-
tivity (Hoppe 1983). Combined hydrolysis and uptake of ra-
dio-labeled proteins and peptides have also been measured
(Hollibaugh and Azam 1983; Keil and Kirchman 1992; Tay-
lor 1995). A fluorescently labeled lucifer yellow anhydride
(LYA)-peptide was recently synthesized and tested in sea-
water and sediments (Pantoja et al. 1997; Pantoja and Lee
1999). This compound has the advantage of allowing anal-
ysis of both the parent compound that is being hydrolyzed
and the products formed by the hydrolysis reaction; it also
competes with a range of peptides of different compositions
for extracellular hydrolysis.

Extracellular amino acid oxidation has been observed in
a variety of phytoplankton species (Palenik and Morel
1990b, 1991) and systems (Pantoja and Lee 1994; Mulhol-
land et al. 1998). Amino acid oxidation results in the liber-
ation of NH from amino acids, which is then available for1

4

uptake. This oxidation pathway has been quantified using
the fluorescently labeled amino acid, LYA-lysine (Pantoja
and Lee 1994; Mulholland et al. 1998).

To determine whether amino acids are important in fueling
the growth and development of brown tides, we conducted
a seasonal study in Quantuck Bay, Long Island, New York.
In addition to standard nutrient, urea, DOC, DON, and DIN

concentrations, we measured concentrations of free and com-
bined amino acids and uptake of amino acid N and C relative
to the uptake of DIN and urea. In addition, we used LYA-
lysine and LYA-peptides to measure rates of amino acid ox-
idation and peptide hydrolysis to assess the importance of
these pathways both in the field and in cultures of A. ano-
phagefferens.

Methods

Sampling site—Quantuck Bay is a small (;5 km2), shal-
low (;4 m) lagoon along the south shore of Long Island,
New York, which tidally exchanges with Moriches Bay to
the west and with Shinnecock Bay to the east (Fig. 1).
Brown tide blooms have recurred seasonally in this and other
Long Island embayments for over 15 yr (Cosper et al. 1990;
Gobler and Sañudo-Wilhelmy 2001b). Water was collected
from a nearshore station in the southeast portion of Quantuck
Bay on a monthly basis from April through November 2000
to compare rates of N and C uptake, amino acid oxidation,
and peptide hydrolysis over a seasonal cycle as the popu-
lation changed and a brown tide bloom formed and decayed.
Water was collected from just below the surface with a high-
density polyethylene bucket and transferred to 20-liter poly-
ethylene carboys for transport to the laboratory. Carboys,
plastic buckets, and all other materials associated with the
sampling, handling, and storage of seawater during this pro-
ject were soaked in 10% HCl between sampling dates and
rinsed liberally with distilled–deionized water before use.
The shallow (;4 m), well-mixed nature of estuaries along
the south shore of Long Island (Wilson et al. 1991) ensured
that sample water collected was representative of the entire
water column. Experiments were initiated in the laboratory
within 30 min of sample collection.
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Amino acid, nutrient, and biomass measurements—In the
laboratory, samples for nutrient analyses were filtered
through precombusted (4508C for 2 h) GF/F filters or acid-
washed 0.2-mm polycarbonate filters. Duplicate acid-cleaned
bottles were filled with between 5 and 50 ml of water and
frozen until analysis. Filters and preserved samples (1% glu-
taraldehyde) were collected for biomass determination.

Dissolved free amino acids were measured in duplicate as
the individual compounds by high-performance liquid chro-
matography (HPLC) (Lindroth and Mopper 1979; Cowie and
Hedges 1992) and/or fluorometrically as total DFAAs (Par-
sons et al. 1984). Total hydrolysable amino acids were mea-
sured in duplicate after vapor phase hydrolysis (Tsugita et
al. 1987; Keil and Kirchman 1991).

Ammonium, urea, and NO were analyzed colorimetri-2
3

cally (Newell et al. 1967; Jones 1984; Parsons et al. 1984),
all in duplicate. Recoveries (mean 6 1 standard deviation
[SD]) of SPEX Certi-PrepINC inorganic nutrient standard ref-
erence material at environmentally representative concentra-
tions were 98 6 7% for nitrate and 103% 6 8% for am-
monium. Total dissolved nitrogen concentrations (TDN)
were determined in duplicate using persulfate oxidation
(Valderrama 1981). Recoveries of SPEX Certi-PrepINC or-
ganic nutrient standard reference material at environmentally
representative levels were 94 6 12% for total nitrogen. DON
was calculated as the difference between TDN and dissolved
inorganic nitrogen (nitrate, nitrite, ammonium). Precombus-
tion of glassware and acid-cleaned plasticware provided ad-
equately low blanks for chemical analyses (,10% of lowest
sample).

A. anophagefferens abundance was quantified in triplicate,
glutaraldehyde-preserved samples by direct counts using an
epifluorescence microscope after reacting cells that were
gently filtered (,5 kPa) onto a 0.8-mm black polycarbonate
filter with an immunofluorescent antibody label (Anderson
et al. 1989). The original technique was modified by increas-
ing the amount of primary and secondary antibody by a
factor of two. A minimum of 100 cells were counted per
sample in at least 10 fields to yield a relative standard de-
viation of 9% for replicate counts of the same sample (n 5
6) at cell densities of 2 3 105 cells ml21, approximating
average densities during blooms. To ensure accurate results,
the immunofluorescent technique was compared to counts
performed with a hemacytometer on a light microscope. The
two techniques yielded statistically identical results using A.
anophagefferens clone 1708 at cell densities of 2 3 105 cells
ml21, the approximate mean densities found in Quantuck
Bay during this study.

Bacteria were enumerated according to Porter and Feig
(1980) using the fluorochrome 4,6-diamidinophenylindole
(DAPI). Chlorophyll a was measured in triplicate by stan-
dard fluorometric methods (Parsons et al. 1984). The amount
of Chl a due to the presence of brown tide in samples was
estimated by assuming a constant Chl a per cell value for
A. anophagefferens (0.035 6 0.003 pg cell21 for nutrient
replete cultures) and multiplying this value by A. anophag-
efferens densities. While such calculations could introduce
bias from variability of cellular chlorophyll concentrations,
they have been used successfully to compare A. anophag-
efferens biomass to that of the total algal community

(Schaffner 1999; Gobler and Sañudo-Wilhemly 2001b; Gob-
ler et al. 2002).

Oxidation and hydrolysis rate measurements—During a
1999 pilot study, we observed no enzyme activity in the
,0.2-mm size fractions in Quantuck Bay. This observation
was consistent with our other estuarine studies (Mulholland
et al. pers. comm.). Therefore, we examined activity in the
,1.2-mm size fraction (e.g., bacterial sized), the ,5.0-mm
size fraction (brown tide sized), and whole water (larger
plankton). Rates of amino acid oxidation and peptide hydro-
lysis were measured in the lab in triplicate by placing 25 ml
of size-fractionated or whole water into an acid-cleaned
polycarbonate incubation bottle. Either 100 nM LYA-lysine
(amino acid oxidation) or 95 nM LYA-tetraalanine (peptide
hydrolysis) was added to incubation bottles. Samples were
taken at time zero and subsequently at intervals ranging from
30 min to 4–6 h. Samples were filtered (0.2 mm) and frozen
until analysis by HPLC.

LYA-lysine and LYA-ala4 and their products were sepa-
rated and quantified using a Shimadzu HPLC system
equipped with a refrigerated autosampler, a McPherson fluo-
rometric detector (424 nm excitation and 476 nm emission),
and a 250 mm Beckman C18 column. For the analysis of
LYA-lysine and its products, we ran a gradient using 0.05
M KH2PO4 (pH 4.5) and a mixture of 50 : 50 acetonitrile :
0.05 M KH2PO4 (pH 4.5) (Pantoja et al. 1993; Pantoja and
Lee 1994; Mulholland et al. 1998). For the analysis of LYA-
tetraalanine and its products (LYA-alanine, LYA-dialanine,
and LYA trialanine), we used a gradient of 0.05 M KH2PO4

(pH 4.5) and methanol (Pantoja et al. 1997).
First-order rate constants for amino acid oxidation and

peptide hydrolysis were calculated based on the disappear-
ance of parent compounds during the time-course incuba-
tions (Pantoja et al. 1997). Both rate constants and maximum
rates are reported. Maximum rates were calculated by mul-
tiplying the first-order rate constant by the pool of DFAAs
for amino acid oxidation, or DCAAs for peptide hydrolysis.
Because the calculated rate is directly proportional to the
size of the substrate pool (Pantoja et al. 1997), and the avail-
ability of the substrate pools is unknown but undoubtedly
less than 100% of that measured, we consider the calculated
rates to be maximum rates.

Uptake rate measurements—Uptake of 15N-labeled com-
pounds (NH , NO , urea) and dually labeled, 13C and 15N1 2

4 3

glutamate and alanine was measured on size-fractionated
water incubated in acid-cleaned polycarbonate bottles. N at-
oms were uniformly labeled in all substrates used. Both C
and N atoms were uniformly labeled for the dually labeled
amino acids. Experiments were initiated by adding tracer
concentrations (10% or 0.03 mmol L21) of the highly en-
riched (96–99%) labeled substrate, with the exception of the
kinetic experiment described below. After an incubation pe-
riod of less than 1 h, experiments were terminated by gentle
filtration (,5 mg Hg) through precombusted GF/F filters
(4508C for 2 h); these filters were rinsed with filtered sea-
water and frozen until analysis.

Incubations for uptake and enzyme rate measurements
were conducted at temperatures within 28C of ambient levels
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Table 1. Temperature and nutrient concentrations in water from Quantuck Bay, Long Island, and in cultures of A. anophagefferens.
Numbers in parentheses are standard deviations.

Date
Temp.
(8C)

Nitrate
(mM)

Ammonium
(mM)

Urea
(mM)

DON
(mM)

DFAA
(mM)

DCAA
(mM)

Phosphate
(mM)

DIN :
DIP

DIN :
DON

Quantuck Bay
17 Apr 00
24 May 00
29 Jun 00
26 Jul 00

9
21
24.1
21.4

1.30 (0.04)
0.67 (0.07)
0.31 (0.03)
0.14 (0.08)

0.10 (0.05)
0.62 (0.40)
1.74 (0.04)
1.03 (0.31)

0.10 (0.05)
0.19 (0.02)
0.33 (0.16)
0.46 (0.01)

13.6 (0.39)
21.6 (1.04)
30.0 (2.23)
31.5 (0.17)

0.28
0.42 (0.007)
0.99 (0.002)
1.22 (0.22)

1.98
1.99

3.95 (0.14)
1.07 (0.08)

0.15 (0.04)
0.09 (0.02)
0.58 (0.03)
1.90 (0.09)

9.15
14.1

3.50
0.61

0.10
0.06
0.07
0.04

30 Aug 00
26 Sep 00
24 Oct 00
29 Nov 00

22.8
16.7
13.3
6.4

0.20 (0.13)
0.16 (0.03)
0.11 (0.12)

13.54 (0.49)

1.02 (0.14)
0.18 (0.17)
0.70 (0.31)
4.94 (0.13)

0.17 (0.06)
0.82 (0.08)
0.22 (0.20)
0.35 (0.08)

36.1 (0.97)
30.2 (0.62)
25.2 (2.42)
23.1 (3.11)

1.12 (0.06)
1.95 (0.02)
0.47 (0.00)
0.50 (0.01)

1.28 (0.01)
1.15 (0.01)
0.81 (0.10)
0.33 (0.01)

1.21 (0.08)
1.03 (0.09)
0.63 (0.31)
0.33 (0.02)

1.01
0.33
1.28

55.7

0.03
0.01
0.03
0.80

Cultures
Exponential
Late exp.

20
20

916
153

0.63
0.54

0.03
0.03

0.21 (0.02)
0.84

3.20
13.8

in Quantuck Bay and under 70 mE m22 s21 of light. The
average incoming solar radiation during daylight hours to
Long Island during our study dates was 1,500 mE m22 s21

(V. Cassella, Brookhaven National Lab, pers. comm.), and
the average extinction coefficient in the Quantuck Bay water
column during experiments was 1.71. Therefore, the light
levels used in our incubations were equivalent to the light
levels found at 1.8 m in the water column of Quantuck Bay
during this period, or ;5% of incident radiation.

Because we were not aware of any previous studies using
dually labeled amino acids to estimate C and N uptake by
phytoplankton, we conducted an intensive kinetic study dur-
ing May 2000. For this experiment, we added 0.03, 0.1, 0.3,
1.0, 3.0, 10, or 30 mmol L21 of either dual 15N/13C-labeled
alanine or glutamate to replicate bottles filled with whole
water from Quantuck Bay. For each substrate and each level
of substrate addition, we filtered samples after 0.17, 0.33,
0.67, 1, or 1.58 h to measure uptake of 15N or 13C from amino
acids. From these experiments, we plotted specific uptake
rates (V in units of h21) versus substrate concentration.

Carbon and nitrogen isotopic ratios in samples were an-
alyzed on a Europa Scientific ANCA-SL 20–20 isotope ratio
mass spectrometer (IRMS), and uptake rates were calculated
using the equations of Glibert and Capone (1993) with one
exception. Uptake of amino acids was calculated using dis-
solved free amino acids (DFAAs) as the relevant ambient
amino acid pool. While the relative lability of individual
amino acids is unknown, we assumed that all amino acids
were equal. To calculate the atom percent enrichment (both
C and N) of the DFAA pool for the dually labeled amino
acids (15N and 13C), we estimated the atom C : N ratio of the
ambient DFAA pool. We did this by quantifying the con-
centrations and C : N ratios of individual amino acids and
appropriately weighting these to estimate the C : N ratio of
the total pool. Such calculations established a 3.7 : 1 C : N
ratio for the DFAA pool during this study.

Culture experiments—For comparison with results from
natural waters, amino acid oxidation, peptide hydrolysis, and
N uptake rates were examined in exponential and late-ex-
ponential phase cultures of Aureococcus anophagefferens.
Axenic cultures of A. anophagefferens were not available to

us at the time of these experiments. Clone CCMP1706 was
grown on L1 artificial seawater (30‰) containing 1 mM
NO at 208C and 100 mE m22 s21 supplied on a 14 : 10 light :2

3

dark cycle. Cultures were bubbled with 0.2-mm filtered air.
Light levels were maintained with cool white fluorescent
lamps. Rates were measured in triplicate samples over time
courses both in whole culture and in the ,1.2-mm filtrate.
Experiments were initiated and terminated in a manner iden-
tical to the studies with natural waters. Rates reported here
are the difference between the whole and ,1.2-mm fraction,
and thus should exclude most bacteria present in the culture
(Dzurica et al. 1989).

Results

Microbial and nutrient dynamics in Quantuck Bay—Dy-
namic changes in temperature and nutrients (Table 1) and
phytoplankton biomass and bacterial densities (Table 2) were
observed during our 8-month study of Quantuck Bay. While
Chl a, A. anophagefferens cell densities, DON, and temper-
ature were low in April, all of these parameters increased by
a factor of two during May. Small cells dominated the phy-
toplankton community throughout the study, with an average
of 89 6 12% (1 SD) of chlorophyll in the ,5-mm size frac-
tion (Table 2). An intense phytoplankton bloom occurred
during the month of June, as chlorophyll, POC, PON, and
A. anophagefferens concentrations reached their highest lev-
els of our study (30 mg L21, 438 mM, 55 mM, and 4.8 3
105 cells ml21 respectively; Table 2). A. anophagefferens ac-
counted for 55% of phytoplankton biomass during this phy-
toplankton bloom, and DON levels exceeded 30 mM. Bac-
terial densities were also elevated during this bloom (1.5 3
107 cells ml21; Table 2). By July, the bloom had dissipated,
chlorophyll levels decreased threefold, and A. anophageffer-
ens densities dropped by an order of magnitude (Table 2).
In contrast, bacterial densities remained high (1.7 3 107 cells
ml21) during July, and PC and PN decreased by only 25%
(Table 2).

During August and September, the brown tide population
rebounded and cell densities exceeded 2.0 3 105 cells ml21

during both months. During this time, A. anophagefferens
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Table 2. Particulate organic C and N (PC, PN), chlorophyll a concentrations (whole water and ,5 mm), bacterial densities, abundance
of brown tide cells (BT), and relative abundance of brown tide in the phytoplankton community (% BT) in water from Quantuck Bay,
Long Island, and in cultures of A. anophagefferens. Numbers in parentheses are standard deviations.

Date
PN

(mM)
PC

(mM) C : N
Chl a

(mg L21)
Chl a , 5 mm

(mg L21)

Bacteria
cells ml21

(3 107)

BT
cells ml21

(3 105) % BT

Quantuck Bay
17 Apr 00
24 May 00
29 Jun 00
26 Jul 00
30 Aug 00

11.1 (2.3)
11.7 (0.99)
50.5 (0.4)
37.5 (0.4)
38.7 (1.2)

99.5 (6.1)
438 (6.5)
335 (7.2)
324 (26)

8.50
8.67
8.93
8.37

3.55 (0.94)
7.08 (0.50)

30.3 (2.19)
9.54 (0.78)

10.8 (0.84)

2.84 (0.61)
6.53 (0.74)

30.6 (1.91)
9.26 (2.54)

10.1 (0.40)

0.23 (0.01)
0.69 (0.17)
1.57 (0.79)
1.75 (0.05)
1.12 (0.05)

0.04 (0.01)
0.40 (0.12)
4.76 (0.46)
0.48 (0.10)
2.04 (0.30)

3.75
19.76
54.92
17.55
66.24

26 Sep 00
24 Oct 00
29 Nov 00

Cultures
Exponential
Late exp.

34.2 (0.05)
22 (0.5)
12.8 (0.5)

91.3 (2.3)
323 (10)

229 (3.7)
173 (1.2)
356 (8)

632 (14)
2367 (60)

6.70
7.86

27.8

6.92
7.33

11.7 (0.31)
4.73 (0.13)
2.33 (0.24)

11.0 (0.96)
4.13 (0.14)
1.5 (0.09)

1.49 (0.17)
0.76 (0.03)
0.29 (0.03)

2.58 (0.36)
0.23 (0.17)
0.06 (0.04)

37.6*
133*

77.36
16.67
9.02

100
100

* Estimated based on an average of 0.34 pg N cell21 (Gobler 1995).

Table 3. First-order rate constants for amino acid oxidation and
peptide hydrolysis in ,1.2 mm, ,1.2–5.0 mm, and whole water
from Quantuck Bay, Long Island, and in cultures of A. anophag-
efferens.

Date

AAO (d21)

,1.2
mm

,5.0
mm Whole

Peptide hydrolysis (d21)

,1.2
mm

,5.0
mm Whole

Quantuck Bay
17 Apr 00
24 May 00
29 Jun 00
26 Jul 00
30 Aug 00

0
0.34
3.58
1.54
1.31

0
1.25
4.58
3.75
2.81

0
1.32
4.78
4.26
2.91

0.30
1.54
1.92
0.60
0.50

0.35
2.40
6.99
2.33
2.37

0.66
3.80
7.13
2.40
3.31

26 Sep 00
24 Oct 00
29 Nov 00

Cultures
Exponential
Late exp.

2.05
0.29
0

0.4
2.97

2.98
0.42
0

2.85
0.65
0

2.22
11.42

0.29
0.14
0

1.25
0.57

1.66
0.40
0.09

2.41
0.46
0.55

58.3
179.1

accounted for 66% (August) and 77% (September) of phy-
toplankton biomass in Quantuck Bay (Table 2). At the same
time, bacterial cell densities exceeded 1 3 107 cells ml21

and DON levels were .30 mM (Table 1). During October
and November, temperature, DON, chlorophyll, brown tide,
and bacterial cell densities all decreased markedly (Tables 1
and 2). By contrast, the bay was enriched in both nitrate and
ammonium during November (14 and 5 mM; Table 1). Or-
ganic nitrogen dominated the dissolved N pool of Quantuck
Bay throughout the study period. DON levels were at least
an order of magnitude (10- to 90-fold) greater than DIN
levels, except in November when DON and DIN were more
similar (Table 1). On average, 12 6 5% (mean 6 1 SD) of
the DON pool consisted of the three labile components we
measured, DCAAs, DFAAs, and urea, usually in that relative
order.

We observed DFAA concentrations between 0.28 and 1.95
mM during our study period, with the highest levels ob-

served during summer months (Table 2). Summer concen-
trations of DFAAs were higher than those observed in some
other estuarine systems but comparable to those we have
measured in a similar organically enriched Chesapeake Bay
subestuary (Mulholland et al. pers. comm.). For comparison,
DFAA concentrations averaging between 0.14 to 0.47 mM
have been reported for the mesohaline Chesapeake Bay
(Bronk et al. 1998). DFAA concentrations averaged 0.18 to
0.22 mM in Flax Pond, New York (Jørgensen et al. 1993),
and were between 0.3 and 0.7 mM in the Delaware Estuary
(Middelboe et al. 1995). DCAA concentrations were be-
tween 0.81 and 3.95 mM during our study period, generally
consistent with other estuarine studies (Keil and Kirchman
1991, 1999; Mulholland et al. pers. comm.).

Amino acid oxidation and peptide hydrolysis—First-order
rate constants (the reciprocal of turnover times) were cal-
culated for amino acid oxidation and peptide hydrolysis in
size-fractionated water samples taken throughout our study
(Table 3). In whole water samples, the DFAA pool turned
over in 0.21 to 1.5 d due to amino acid oxidation, while the
DCAA pool turned over in 0.14 to 2.2 d due to peptide
hydrolysis. For comparison, turnover times for DFAAs were
between 0.03–0.29 d in the northern Sargasso Sea (Keil and
Kirchman 1999) and 0.013–0.14 d in the Mississippi River
plume (Hopkinson et al. 1998). DCAA turnover times were
similar to those reported for the protein pool (0.38 and 3.42
d) in the Sargasso Sea (Keil and Kirchman 1999). Rate con-
stants were combined with DFAA or DCAA concentrations
(Table 1) to estimate maximum rates.

Amino acid oxidation and peptide hydrolysis rates were
generally higher during warm, summer months and lower
during the cooler months of our study (Table 4; Fig. 2A,B).
For example, mean amino acid oxidation rates were 0.22 6
0.27 (1 SD) mM N d21 during April, May, October, and
November but averaged 4.8 6 1.1 mM N d21 from June to
September (Fig. 2A). Similarly, peptide hydrolysis rates av-
eraged 0.62 6 0.60 (1 SD) mM N d21 during April, October,
and November but were an order of magnitude greater from
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Table 4. Rates of amino acid oxidation and peptide hydrolysis in ,1.2 mm, ,1.2–5.0 mm, and whole water and amino acid and NH1
4

uptake in ,5.0 mm and whole water from Quantuck Bay, Long Island, and cultures of A. anophagefferens. Numbers in parentheses are
standard deviations.

Date

AAO
(mM DFAA d21)

,1.2
mm

1.2–5.0
mm

.5.0
mm

Peptide hydrolysis
(mM DCAA d21)

,1.2
mm

1.2–5.0
mm

.5.0
mm

Amino acid uptake
(mM N d21)

,5.0
mm

.5.0
mm

NH uptake1
4

(mM N d21)

.5.0
mm

,5.0
mm

Total N
uptake

(mM d21)

Percent
AA

uptake

Quantuck Bay
17 Apr 00
24 May 00
29 Jun 00
26 Jul 00
30 Aug 00

0
0.14
3.54
1.87
1.47

0
0.38
0.99
2.69
1.68

0
0.03
0.2
0.62
0.11

0.59
3.1
7.58
0.64
0.64

0.1
1.71

20
1.85
2.39

0.61
2.79
0.55
0.07
1.20

1.2 (0.1)
1.8 (0.4)

12.9 (0.5)
24.1 (0.3)
38.4 (0.6)

2.7 (0.4)
2.1 (0.6)

11.3 (0.5)
0 (1.2)
0 (0.9)

0.24 (0.02)
18.6 (2.3)
80.9 (2.8)
68.0 (6.7)
88.3 (1.9)

0 (0.01)
4.03 (0.5)
0 (0.5)
0 (0.5)
2.88 (0.2)

4.5
30.7

117.3
115.3
151.6

85.8
12.7
20.6
20.9
25.3

26 Sep 00
24 Oct 00
29 Nov 00

Cultures
Exponential
Late exp.

4.0
0.14
0

0.08
2.51

1.81
0.06
0

0.47
9.61

0
0.11
0

0.33
0.11
0

3.9
7.9

1.57
0.21
0.09

184
2,500

0.86
0.05
0.09

53.3 (2.6)
1.4 (0.1)
0.05 (0.01)

25.3 (0.4)
0.4 (0.2)
0.02 (0.002)

22.7 (0.5)
64 (20)

17.9 (0.1)
53.9 (2.8)
0.26 (0.09)

1.10 (0.1)
10.2 (0.7)

0 (0.09)

44.8 (1.4)
84.6 (3.9)

158.3
58.4
0.41

71.9
152.5

49.7
3.1

17.7

31.6
42.0

May through September (9.1 6 10.8 [1 SD] mM N d21; Fig.
2B). Rates of amino acid oxidation were high during all of
the summer months and were correlated with temperature (r2

5 0.73; P , 0.01) (Fig. 2A) and not Chl a or brown tide
abundance (Fig. 2C). However, rates of peptide hydrolysis
were more closely correlated with Chl a (r2 5 0.89; P ,
0.001) and brown tide abundance (r2 5 0.70; P , 0.001)
(Fig. 2D) and not well correlated with temperature (Fig. 2B).

Almost half of the amino acid oxidation was in the bac-
terial size fraction (,1.2 mm; 49 6 16% of total activity
May–November; Fig. 3A), while peptide hydrolysis was pri-
marily in the brown tide-sized size fraction (1.2–5.0 mm; 56
6 16% of total activity [May–November; Fig. 3B]), partic-
ularly during the June bloom (71%). Consistent with our
size-fractionated sample data, regression analysis indicated
that amino acid oxidation rates were highly correlated with
bacterial densities (r2 5 0.91; P , 0.001), while peptide
hydrolysis rates were correlated with Chl a concentrations
and A. anophagefferens cell densities (see above).

Nitrogen uptake—In Quantuck Bay, most of the N uptake
was in the ,5.0-mm size fraction, and NH was the primary1

4

form of N taken up during most of the year (Fig. 4). During
the June brown tide event when A. anophagefferens repre-
sented 55% of the biomass, NH uptake accounted for nearly1

4

60% of the total N uptake. Similarly, during August, A. an-
ophagefferens accounted for 66% of algal biomass, and 58%
of N uptake was from NH (Fig. 4). However, in September,1

4

when A. anophagefferens was 77% of the total biomass,
NH uptake accounted for just 18% of the total N uptake1

4

(Fig. 4), since concentrations of NH were near the limit of1
4

analytical detection (Table 1). At that time, uptake of amino
acid (50%) (Table 4) and urea (36%) N was 86% of the total
N uptake (Fig. 4). The relative contribution of urea to N
uptake was comparable to that of amino acids during May,
June, July, and October (e.g., Table 4). Amino acid uptake
was higher than urea uptake in April, August, and September
(Fig. 4), when DFAA concentrations were high relative to
urea (Table 1). A comparison of amino acid oxidation and

NH uptake rates shows that amino acid oxidation could at1
4

times contribute substantially to NH uptake (,1–32.5 %)1
4

and could therefore account for rates of PN turnover of up
to 0.17 d21 (Table 5).

Amino acid N and C uptake—Uptake rates of DFAA-N
in this study ranged from 75 to 3,275 nM N h21 and repre-
sented between 3.2% (November) and 78% (September) of
the total N uptake (Fig. 4). Total DFAA-N uptake rates were
higher, and amino acid uptake a larger portion of total N
supply, than in similar studies in Chesapeake Bay (1–7%;
Glibert et al. 1991) and during a brown tide bloom in another
Long Island embayment in July 1995 (11–16%; Berg et al.
1997).

Measured rates of DFAA-C uptake ranged from 41 to 110
mM C d21 between June and September in whole water sam-
ples from organic-rich Quantuck Bay, but were lower in Oc-
tober (Table 6). These rates are at least 100 times higher
than those observed in a study in Long Island Sound, using
3H tracer (Fuhrman 1987) and 10 to 100 times the rate mea-
sured in Flax Pond, a tidal embayment on Long Island using
14C tracer (Jørgensen et al. 1993).

The turnover of PN and PC pools due to amino acid up-
take ranged from 0.08 to 2.3 d21 and 0.02 to 0.48 d21, re-
spectively (Table 7). Similar to the DFAA pool, PN and PC
turnover times were shorter between June and September.
Turnover of PN from amino acid uptake increased from 0.48
d21 in June to 2.3 d21 in September. Similarly, rates of PC
turnover from amino acid uptake increased from 0.11 d21 to
0.48 d21 over the same interval. The growth rate of A. an-
ophagefferens in another Long Island embayment was esti-
mated to be 0.3 d21 (Berg et al. 1997).

Alanine and glutamate uptake was linear over time at each
substrate concentration tested (0.03 to 30 mM) (data not
shown). However, hyperbolic saturation responses were not
obtained for C and N uptake from either amino acid during
the amino acid uptake kinetics experiments (Fig. 5). These
results precluded measurements at low amino acid concen-
trations but were similar to the results found for NH in an1

4
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Fig. 2. First-order rate constants for amino acid oxidation (lines in A and C) and peptide hydrolysis (lines in B and D) as a function
of temperature (bars in A and B) and as a function of chlorophyll biomass (black bars in C and D) and A. anophagefferens abundance
(white bars in C and D) over the course of a seasonal cycle.

Fig. 3. Distribution of (A) amino acid oxidation and (B) peptide
hydrolysis among size fractions over the course of a seasonal cycle.

Fig. 4. Relative uptake rates of N compounds in (A) whole
water and cultures and (B) ,5.0-mm water collected from Quantuck
Bay, monthly, over a seasonal cycle.
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Table 5. AAO, PH, and NH uptake in whole water samples from Quantuck Bay and cultures of A. anophagefferens. Also shown are1
4

the percent contribution of NH from AAO to total NH uptake, the relative percent of amino acids oxidized and taken up, and the rate1 1
4 4

constants for particulate N turnover from AAO-derived N.

Date
AAO

(mM DFAA d21)
PH

(mM DCAA d21)
NH uptake1

4

(mM N d21)

Percent
AAO/NH1

4

uptake

Percent
AAO/AA

uptake

PN turnover
from AAO

(d21)

Quantuck Bay
17 Apr 00
24 May 00
29 Jun 00
26 Jul 00
30 Aug 00

0.0
0.55
4.73
5.18
3.26

1.3
7.6

28.1
2.56
4.23

0.24
22.6
80.9
68.0
91.2

0.0
2.4
5.8
7.6
3.6

0.0
14.1
19.5
21.5

8.5

0.0
0.05
0.09
0.14
0.08

26 Sep 00
24 Oct 00
29 Nov 00

Cultures
Exponential
Late exp.

5.81
0.31
0.0

0.55
12.1

2.76
0.37
0.18

187.9
2,508

19.0
64.1

0.26

44.8
84.6

30.6
0.5
0.0

1.2
14.3

7.4
17.2

0.0

2.4
18.9

0.17
0.01
0.0

0.01
0.04

Table 6. Rates of N and C uptake from amino acids, extracellular release of C from AAO, C uptake calculated based on N uptake, C
uptake corrected for extracellular C release from AAO, and the percent C unaccounted for after uptake and AAO in whole water samples
from Quantuck Bay and in cultures of A. anophagefferens. Numbers in parentheses are standard deviations.

Date
AA N uptake
(mM N d21)

AA C uptake
(mM C d21)

Calculated C
released

from AAO*

Maximum C
uptake from

AA N uptake*

Maximum C
uptake

corrected
for AAO†

Percent
C imbalance

Quantuck Bay
17 Apr 00
24 May 00
29 Jul 00
26 Jul 00
30 Aug 00

3.9 (0.4)
3.9 (0.6)

24.2 (0.5)
24.1 (1.2)
38.4 (0.9)

49.3 (1.6)
41.0 (4.9)
65.9 (3.1)

0
2.06

17.7
19.4
12.2

14.6
14.6
90.5
90.1

144

14.6
12.5
72.8
70.8

131

32.3
42.1
49.7

26 Sep 00
24 Oct 00
29 Nov 00

Cultures
Exponential
Late exp.

78.6 (0.4)
1.8 (0.15)
1.8 (0.05)

22.7 (0.4)
64 (12)

110 (3.4)
4.1 (0.9)
4.3 (1.9)

51.3 (3.1)
1,061 (64)

21.7
1.16
0

2.06
45.3

294
6.7
6.7

84.9
239

272
5.6
6.7

82.8
194

59.6
26.8
35.8

38.0
2447

* Calculated based on N released from AAO or taken up and an average C : N ratio of the DFAA pool of 3.74.
† Assumed all N from AAO was taken up and N uptake was uncoupled from C uptake.

earlier study conducted during a brown tide bloom (Lomas
et al. 1996). For these reasons, we did not calculate Vmax or
Ks values for either amino acid tested. However, we specu-
late that they would be on the order of a micromolar based
on the responses observed. Phytoplankton amino acid uptake
rates have not been routinely measured, so there are few data
to compare with these. Literature values for Ks suggest that
the affinity for amino acids is low in phytoplankton (Antia
et al. 1991).

The highest specific uptake rates in the kinetic studies
were observed at low addition levels. One reason for this
may be the high ambient amino acid concentrations during
this period (1.07 mM; alanine and glutamate concentrations
were between 5 and 7% of the DFAA pool). Other investi-
gators have measured high uptake rates when the atom per-
cent enrichment of the substrate pool is substantially lower
than 10% (Glibert pers. comm.). However, in this study, the
decrease in V was observed for both substrates over addi-

tions ranging from 0.03 to 3.0 mM and not just at low atom
percent enrichments. The high uptake rates observed at low
concentrations could also be due to a rapid uptake response
such as that observed for NH under NH limitation. Further1 1

4 4

studies are needed to investigate the observed relationship
under a variety of nutrient conditions.

Alanine and glutamate uptake were highest in the incu-
bations that were shortest in duration (Fig. 5). This suggests
that amino acid regeneration may affect measured uptake
rates when incubation times are long and argues for use of
short incubation times.

The molar C : N uptake ratio from free glutamic acid and
alanine averaged 1.9 6 0.3 (1 SD; Fig. 6). We can compare
this with the theoretical C uptake expected if all of the C
from amino acids was assimilated, based on measured N
uptake (Table 6). In making this calculation, we subtracted
C released from amino acid oxidation, since N can be taken
up independently from C during this process. Measured up-
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Table 7. Rate constants for DFAA, DCAA, PN, and PC turnover
resulting from amino acid uptake by natural populations from Quan-
tuck Bay and cultures of A. anophagefferens.

Date

DFAA-N
turnover

(d21)

DFAA-C
turnover

(d21)

PN
turnover

(d21)

PC
turnover

(d21)

Quantuck Bay
17 Apr 00
24 May 00
29 Jun 00
26 Jul 00

13.9
9.30

24.4
19.8

13.3
9.02

0.35
0.33
0.48
0.64

0.11
0.12

30 Aug 00
26 Sep 00
24 Oct 00

Cultures
Exponential
Late exp.

34.3
40.3
3.86

108.1
76.2

15.7
15.1

2.35

224.3
1263

0.99
2.30
0.08

0.25
0.20

0.20
0.48
0.02

0.08
0.45

Fig. 5. Nitrogen (A and C) and carbon (B and D) uptake kinetic curves for dual 13C/15N-labeled
glutamate (A and B) and alanine (C and D). The symbols are the uptake rates determined by mass
spectrometry for experiments using incubations ranging from 0.17 to 1.58 h in duration. The solid
line represents the best fit for the 0.67 h set of incubations.

take of C from amino acids was always less than the cal-
culated theoretical C uptake, except for late-exponential
phase cultures (see below). Since measurements of C uptake
were net measurements, the deficit C taken up may have
been respired, although respiration rates were not measured
during this study.

Culture experiments—Exponentially growing cultures of
A. anophagefferens exhibited very high rate constants for
peptide hydrolysis relative to those of natural populations
(58 and 179 d21 in exponential and late-exponential phase
cultures, respectively; Table 3). However, rate constants for

amino acid oxidation were not elevated relative to natural
populations (Table 3). DCAA concentrations in exponen-
tially growing cultures were comparable with those observed
during the June brown tide bloom in Quantuck Bay, whereas
levels in late-exponential cultures were very high (13.8 mM;
Table 1). DFAA concentrations in exponential and late-ex-
ponential cultures were not elevated relative to concentra-
tions observed in Quantuck Bay. Consequently, calculated
rates of peptide hydrolysis were much higher in cultures of
A. anophagefferens than in the bay, while rates of amino
acid oxidation were more similar (Table 4).

In cultures grown on NO , uptake of NH and DFAAs,2 1
3 4

presumably recycled in the medium, represented the majority
(.90%) of the total N uptake (Fig. 7). In addition, C uptake
from amino acids represented a significant source of C for
growth, particularly during late-exponential phase. Net C up-
take from glutamate (molar C : N ratio of five) and alanine
(molar C : N ratio of three) was measured in exponential and
late-exponential phase cultures of A. anophagefferens (Fig.
8). The molar C : N ratio of net amino acid uptake averaged
2.45 in exponentially growing cultures but increased to 18.5
in late-exponential cultures (Fig. 7).

In cultures of A. anophagefferens, turnover times of the
DFAA and DCAA pools from amino acid oxidation and pep-
tide hydrolysis, respectively, were shorter than those ob-
served in natural populations. For example, the DCAA pool
turned over with rate constants of 179 d21, more than 10
times faster than in the natural populations (Table 3). Sim-
ilarly, rate constants for uptake of both DFAA-C and
DFAA-N were higher in cultures than in natural populations
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Fig. 6. Relative rates of uptake of amino acid N versus C from
(A) alanine and (B) glutamic acid by whole water collected from
Quantuck Bay, monthly, over a seasonal cycle. The C : N molar
uptake ratio (at the top of each pair of bars) ranged from 1.4 to
2.43 in natural populations.

Fig. 7. Relative uptake rates of N compounds in (A) exponential
and (B) late-exponential phase cultures of A. anophagefferens.
There was no measurable NO uptake in either culture.2

3

from Quantuck Bay (Table 7). Turnovers of PN and PC bio-
mass in cultures of A. anophagefferens due to amino acid
uptake were 0.25 and 0.08 d21, respectively, during expo-
nential phase and 0.20 and 0.45 d21, respectively, during
late-exponential phase growth (Table 7). The highest rates
of amino acid C uptake were observed during late-exponen-
tial growth when cell densities were higher and light pene-
tration lower. Uptake rates were comparable in cultures and
natural populations during brown tide blooms.

Discussion

During the summer months of our study (June–Septem-
ber), DIN supply rates may have limited phytoplankton
growth, since the mean ratio of dissolved inorganic N to P
(1.36 6 1.45) was well below the Redfield ratio, and the
mean particulate C : N ratio was 8.2. Such a conclusion is
consistent with monthly bioassays conducted from May
through October 2000, in which additions of nitrate, am-
monium, and urea consistently enhanced phytoplankton
growth rates (data not shown). If growth of phytoplankton
in Quantuck Bay were limited by N supply, species such as
A. anophagefferens that have strategies for using larger DON
compounds would have a competitive advantage over those
that do not, since DON levels are more than an order of
magnitude higher than DIN levels at this site (Table 1).

Because amino acids, peptides, and proteins are N rich,
they can represent a significant source of N in systems de-
pleted in DIN. In addition, these compounds can be impor-
tant sources of C for heterotrophic growth. Extracellular pep-
tide hydrolysis facilitates the breakdown of protein and large
peptide chains into units small enough to be taken up by
cells. Consequently, peptide hydrolysis can support both C
and N acquisition by bacteria and phytoplankton mixotrophs.
We discuss below, however, our finding that the C incor-
porated into cells from amino acid uptake is not in the pro-
portion expected based on measured N uptake from these
compounds and the C : N ratio of the individual amino acids
in the DFAA pool.

One mechanism whereby C and N uptake can be uncou-
pled is extracellular amino acid oxidation. Amino acid oxi-
dation liberates N as ammonium and C in an organic oxi-
dation product; the amino acid-derived N and C can be taken
up independently of one another (and perhaps by different
organisms). It has been assumed that organisms possessing
extracellular oxidation enzymes take up the NH to alleviate1

4
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Fig. 8. Relative uptake rates of amino acid N versus C from
alanine and glutamic acid by (A) exponential and (B) late-exponen-
tial cultures of A. anophagefferens. The C : N molar uptake ratio
averaged 2.45 in exponential phase cultures and 18.55 in late-ex-
ponential phase cultures.

N limitation (Palenik et al. 1988; Palenik and Morel 1990a).
Indeed, uptake of 15NH liberated from LYA 15N lysine has1

4

been recently demonstrated in a natural estuarine population
(Mulholland et al. pers. comm.). In the following discussion,
we investigate the relative importance of these enzymatic
processes to DFAA and DCAA cycling, and to N cycling in
general, in an organically enriched environment that expe-
riences seasonal blooms of A. anophagefferens, an algal
mixotroph.

Extracellular amino acid oxidation—Our results demon-
strate that A. anophagefferens and communities dominated
by this species are capable both of amino acid uptake and
extracellular amino acid oxidation. In this study, cells took
up amino acids at much higher rates than they oxidized them
(e.g., amino acid oxidation was usually less than 20% of the
rate of amino acid uptake) (Table 5). Moreover, most oxi-
dation was by bacteria-sized organisms, and rates were high-
ly correlated with bacterial densities. Turnover times of the
DFAA pool from amino acid oxidation were short, between
0.21 and 0.34 d, between June and October when A. ano-
phagefferens was abundant (Table 3). However, calculations
suggest that turnover of the particulate N pool due to amino

acid oxidation alone (0.01 to 0.17 d21; Table 5) would not
be high enough to support typical phytoplankton growth
rates (e.g., doubling times on the order of 0.2 to 2 d21) or
those of A. anophagefferens (0.3 d21) measured in another
study (Berg et al. 1997). So, we conclude that amino acid
oxidation was not the primary mechanism by which cells
acquired N in this system.

Rates of amino acid oxidation reported here should be
considered maximum values. To estimate amino acid oxi-
dation rates, we assumed that 100% of the DFAA pool was
available for oxidation. We multiplied the concentration of
DFAAs observed at the beginning of the incubation by the
first-order rate constants derived from incubations with the
fluorescent tracer (LYA-lysine). If, as is likely, not all the
DFAA pool is available for oxidation, then rates are pro-
portionately lower. Enrichment of the substrate pool by add-
ed label was not considered for any of the enzymatic mea-
surements, as additions of LYA derivatives were usually
,10% of the ambient pools.

In earlier studies, amino acid oxidation was elevated in
Long Island embayments experiencing blooms of brown tide
relative to other coastal and estuarine systems (Pantoja and
Lee 1994; Mulholland et al. 1998). In those studies, first-
order rate constants for amino acid oxidation were about 0.7
h21. The highest rate constants observed in our study were
about 0.4 h21 during the June brown tide bloom. Previous
studies reported only rate constants or rates of LYA-lysine
oxidation; they did not compare oxidation rates with uptake
of a suite of nitrogenous compounds to determine the rela-
tive importance of this extracellular mechanism. While ex-
tracellular amino acid oxidation could contribute to the cy-
cling of DFAAs, amino acid uptake appeared to be a more
important pathway of amino acid turnover in this system
(Table 4); rates of amino acid oxidation were ,21% of ami-
no acid uptake rates and amino acid oxidation supplied up
to 32.5% of the NH that was taken up by cells. Since ex-1

4

tracellular oxidation of amino acids was primarily accom-
plished by the bacterial size fraction in this system, bacteria
may be important for regenerating NH from amino acids.1

4

Extracellular peptide hydrolysis—Bacterial productivity
and proteolytic activity appear to be tightly coupled in ma-
rine systems (Smith et al. 1992; Hoppe et al. 1993). How-
ever, most studies of proteolytic activity have focused on
heterotrophic bacteria and not phytoplankton, and conse-
quently the contribution of phytoplankton autotrophs and
mixotrophs to proteolytic activity is unknown. During our
laboratory studies, we observed that cultures of A. anophag-
efferens hydrolyzed peptides at high rates. In the field, we
found that A. anophagefferens cell densities were signifi-
cantly correlated with rates of peptide hydrolysis, a process
that would enhance the ability of this species to take up
DFAAs and small peptides, the products of peptide hydro-
lysis. Such a nutritional pathway may be important for
growth in embayments such as Quantuck Bay, where N sup-
ply may limit phytoplankton growth rates and organic N is
abundant.

Rates of peptide hydrolysis measured during the June
bloom could potentially supply all of the amino acids taken
up at this time and an order of magnitude more amino acids
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than were oxidized (Table 5). Rapid hydrolysis of combined
amino acids may fuel high growth rates if cells can take up
the hydrolysis products. We did not observe production of
DFAAs as a result of peptide hydrolysis; DFAA concentra-
tions varied only slightly over time in Quantuck Bay, and
we did not measure their concentrations with time in the
culture experiments. Since peptide hydrolysis was rapid and
there was no buildup of either DFAAs or DCAAs, it is pos-
sible that A. anophagefferens took up and used the hydro-
lysis products to grow. However, we can only assume that
A. anophagefferens is taking up the products of peptide hy-
drolysis. The uptake of DCAAs has not been measured rou-
tinely. In two studies examining the change in concentrations
of the DCAA pool, bacterial DCAA uptake was estimated
to be between 0 and 55.8 nM N L21 h21 and represented up
to 56% of the total N uptake (Jørgensen et al. 1993, 1994).

Several caveats must be considered with regard to our
peptide hydrolysis rate estimates. We assumed that 100% of
the DCAA pool was available for hydrolysis, likely an over-
estimate. We multiplied the DCAA concentration measured
at the outset of the incubations by the first-order rate constant
calculated for the disappearance of the fluorescent tracer
over the time-course incubation to obtain a rate. However,
the 4-amino acid LYA analog used here may not be a perfect
analog of available peptides and proteins. The composition
and length of peptide and protein chains and relative avail-
ability of the individual compounds are unknown. Earlier
investigations examining hydrolysis of LYA-labeled pep-
tides of different lengths and compositions found the prin-
cipal product of hydrolysis to be the dipeptide rather than
the free amino acid (Pantoja et al. 1997; Pantoja and Lee
1999). Pantoja and Lee (1999) found that peptides contain-
ing more than two amino acids were hydrolyzed 10–400
times faster than dipeptides or the fluorogenic substrate Leu-
MCA. The production of dipeptides may result from the in-
hibition of further hydrolysis by the presence of the large
fluorescent compound at the end of the residual LYA-di-
alanine. Alternatively, dipeptides may be small enough (e.g.,
,600 Da) to be incorporated directly by microorganisms as
pointed out in earlier studies. Studies examining uptake of
C and N from compounds larger than individual amino acids
are rare (Antia et al. 1991). To date, uptake of dipeptides
has been demonstrated only for bacteria (Jørgensen et al.
1993, 1994).

DIN and DON uptake—Ammonium and DFAAs were the
major forms of N taken up by microbial communities in
Quantuck Bay (Fig. 4). Concentrations of NH were higher1

4

and specific uptake rates were faster between June and Au-
gust; consequently NH uptake fueled much of the N de-1

4

mand for growth during that time. Urea and DFAA concen-
trations were elevated, and specific uptake rates of these
compounds were higher during September; these compounds
also contributed more to the N nutrition of resident organ-
isms during that period. In contrast to a previous study in a
similar embayment during a brown tide bloom in July 1995
(Lomas et al. 1996; Berg et al. 1997), urea was generally a
less important N source for brown tide organisms during
most of the sampling periods in this study. During the 1995
study, urea concentrations were lower (e.g., 0.04–0.16 mM)

and uptake rates were potential rates (15N additions were
saturating [10 mM]); consequently, actual urea uptake may
have been overestimated. Relatively low urea uptake rates
were observed in this and another culture study of A. ano-
phagefferens (Dzurica et al. 1989). Although reduced and
recycled, forms of N fueled brown tide–dominated com-
munities throughout the summer, the preferred N source
changed over that time. The use of recycled forms of N
during the summer is common in estuarine and marine sys-
tems where new N inputs are confined to spring NO inputs2

3

from upwelling events and runoff (Malone et al. 1986; Gli-
bert et al. 1995).

Rates of amino acid uptake reported here should also be
considered maximum values. As for amino acid oxidation,
we assumed that 100% of the DFAA pool was available for
uptake. Unlike the enzymatic rate estimates, if we assume
only 50% of the DFAA pool is available for uptake, rates
will be reduced by between 55 and 65% because both atom
percent enrichment and pool size change with incubation
time. Furthermore, not all amino acids may be equally avail-
able for uptake. Glutamate and alanine, the compounds used
to trace amino acid C and N uptake, were each between 5
and 7% of the DFAA pool during most of the sampling
periods.

C and N coupling—In addition to being an important
source of N, amino acid uptake supplied a substantial portion
of the C requirements for growth of A. anophagefferens in
Quantuck Bay. These results are consistent with laboratory
experiments in which nonaxenic A. anophagefferens cultures
took up 14C-labeled glutamic acid and glucose (Dzurica et
al. 1989) and field studies in which the addition of glucose
was observed to significantly enhance A. anophagefferens
growth rates (Gobler and Sañudo-Wilhelmy 2001b). More-
over, heterotrophic uptake of organic compounds by other
phytoplankton has been documented previously (e.g.,
Wheeler et al. 1977; Lewitus and Caron 1991; Lewitus et
al. 1999). However, previous field studies have generally
treated uptake of DOM as a heterotrophic process so that
uptake of amino acid C by phytoplankton species is rarely
measured in the field. In addition, the fate of the C in phy-
toplankton that use DON has not been assessed in studies
using 15N tracers.

By employing dually labeled amino acids to directly mea-
sure both C and N uptake rates from amino acids, we showed
that when phytoplankton cells in Quantuck Bay took up ami-
no acids, they incorporated both the N and C from these
compounds. The organic C taken up may allow growth in
excess of that supported by photosynthetic C acquisition
alone. In addition to the advantage of obtaining N, the ability
to obtain C from amino acids may offer A. anophagefferens
a competitive advantage in DOM-enriched environments. If
amino acid uptake can also occur in the dark (probable but
we only made measurements during the light period), then
A. anophagefferens can continue to grow during dark periods
or when self-shading occurs during dense algal blooms. For
example, the 1% light depth in Quantuck Bay during intense
brown tide months (June, August, September) was ,2 m
(based on Secchi disc readings). Under such circumstances,
a phytoplankton species possessing the ability to supplement
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photosynthetic C fixation with heterotrophic uptake of DOC
would have a clear advantage over strictly autotrophic spe-
cies.

Rates of amino acid C uptake varied seasonally in Quan-
tuck Bay and with growth stage in our culture experiments.
We observed that the molar ratio of C : N uptake from amino
acids was about two, regardless of the C : N ratio of the
substrate used (in this case alanine, C : N ratio of 3 : 1, or
glutamate, C : N ratio of 5 : 1). But the ratio varied somewhat
as the seasons progressed and in cultures varied widely
among exponential and late-exponential phase. When we
calculated C uptake based on amino acid N uptake (correct-
ing for the amount of N that could be taken up independently
after extracellular amino acid oxidation), these calculated
rates of C uptake always exceeded the measured rate and,
while the difference between calculated and theoretical val-
ues increased between June and September, the magnitude
of C uptake from amino acids increased (Table 6). This sug-
gests that brown tide cells can alter their nutritional physi-
ology in response to cellular and extracellular parameters.
During the period of highest brown tide cell density, the
proportion of C uptake from amino acids was highest, and
in late-exponential cultures of A. anophagefferens, cells took
up more of the amino acid C than N, resulting in an N
deficit. Physiological changes that allow a shift in the dom-
inant metabolic pathway (e.g., autotrophic versus heterotro-
phic C uptake) may be important as cell density increases
and inorganic nutrients become limiting.

Respiratory losses were not measured during this study
and may account for some of the C imbalance; however,
cells always retained a large proportion of the amino acid
C. In addition, competition from bacterial heterotrophs may
have caused a decrease in the proportion of amino acid C
available for uptake by brown tide and larger cells. We used
GF/F filters (nominal pore size of 0.7–0.8 mm) in the uptake
experiments, so some bacteria probably passed through the
filter.

Previous studies demonstrated that amino acid oxidation
results in N uptake that is independent from C uptake from
amino acids (Mulholland et al. 1998, pers. comm.). Using
dual-labeled amino acid tracers, we have demonstrated that
amino acid oxidation alone does not account for the imbal-
ance in C and N uptake from amino acids. Thus, N uptake
by phytoplankton can be seriously underestimated when C
is used as a tracer of amino acid N uptake (e.g., Table 6).
Conversely, photosynthetic C uptake measurements may un-
derestimate the total C uptake by phytoplankton when these
organisms are capable of taking up organic compounds.
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