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Virus-host relationships of marine single-celled
eukaryotes resolved from metatranscriptomics
Mohammad Moniruzzaman1, Louie L. Wurch2, Harriet Alexander3, Sonya T. Dyhrman3, Christopher J. Gobler4

& Steven W. Wilhelm1

Establishing virus–host relationships has historically relied on culture-dependent approaches.

Here we report on the use of marine metatranscriptomics to probe virus–host relationships.

Statistical co-occurrence analyses of dsDNA, ssRNA and dsRNA viral markers of

polyadenylation-selected RNA sequences from microbial communities dominated by

Aureococcus anophagefferens (Quantuck Bay, NY), and diatoms (Narragansett Bay, RI) show

active infections by diverse giant viruses (NCLDVs) associated with algal and nonalgal hosts.

Ongoing infections of A. anophagefferens by a known Mimiviridae (AaV) occur during bloom

peak and decline. Bloom decline is also accompanied by increased activity of viruses other

than AaV, including (þ ) ssRNA viruses. In Narragansett Bay, increased temporal resolution

reveals active NCLDVs with both ‘boom-and-bust’ and ‘steady-state infection’-like ecologies

that include known as well as novel virus–host interactions. Our approach offers a method for

screening active viral infections and develops links between viruses and their potential

hosts in situ. Our observations further demonstrate that previously unknown virus–host

relationships in marine systems are abundant.
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V
iruses that infect marine microbes are an integral
component of aquatic ecosystems, with a diversity spectrum
spanning the entire Baltimore classification scheme1.

The association of viruses with global-scale biogeochemistry,
algal bloom termination events and their impact on microbial
community diversity have driven scientific research in virus
ecology2,3. Among these predators, giant dsDNA viruses
belonging to the Nucleocytoplasmic Large DNA Virus (NCLDV)
group infect single-celled eukaryotes with diverse lifestyles4 and are
thought to be abundant in the world’s oceans5. Individually some
of these viruses have been shown to be potential drivers of algal
bloom collapse6,7. However, only a few NCLDV–host systems with
established ecological relevance have been identified. As a specific
example, the environmental hosts of the Mimiviridae, isolated
using Acanthamoeba in the laboratory, are yet to be confirmed8.

Along with the NCLDVs, RNA viruses also comprise a major
fraction of the marine viroplankton, infecting organisms ranging
from diatoms and dinoflagellates to fish9. However, little is known
about the ecology and host range of RNA viruses; the first RNA
virus infecting a marine single-celled eukaryote was only described
in 2003 (ref. 10). In addition, recent evidence suggests that a
large number of novel ssDNA virus families possibly infect
yet-to-be-characterized marine phytoplankton and zooplankton11.
Collectively, these observations illustrate the strong need to develop
in situ approaches that link the marine virosphere to their hosts
within the microbial eukaryotes.

The marine ecosystem consists of complex interactions among
diverse organisms and their viruses. While studying individual
host-virus systems remains critical to understanding the
molecular basis of interactions, studying the overall contribution
of viruses in a dynamic network of organisms is hindered by
methodological limitations. Culture-independent approaches to
study viruses, and especially viral communities, are challenging:
‘viromes’—large metagenomic data sets enriched with viral
sequences, are usually generated by size exclusion (r0.22mm) of
bacteria and small eukaryotes2. This approach, however, majorly
removes the large virus particles, which can range from 100 nm to
B1.5mm (ref. 8). Moreover, by targeting DNA, these approaches
examine only the presence of particles and not their activity.
Additionally, RNA-containing virus particles must be targeted
separately from DNA viruses, since common methods for virus
enumeration (using dsDNA intercalating stains) and DNA-based
metagenomics approaches cannot detect them12. Nevertheless,
metagenomic approaches have led to the discovery of numerous
viruses, the sheer number of which greatly exceeds the viruses
isolated from known hosts13. In contrast, metatranscriptomics has
received very little attention as a tool to reveal viral activity and
diversity in different ecological contexts. Among the few studies,
metatranscriptomic data generated from the sub-seafloor sediments
revealed gene expressions indicative of both lytic and lysogenic viral
activities14. In a recent study, metagenomics was complemented
with available metatranscriptomics data to detect the expression of
viral auxiliary metabolic genes (AMGs), possibly involved in
modulating host sulfur metabolism upon infection13.

Advances in sequencing and informatics are ongoing: while
concern about chimeric assemblies and technical errors still exist,
the generation of consensus genomes for populations within
communities is now a common effort. Indeed, a recent workshop
provided a comprehensive proposal to classify assembled virus
genomes within the International Committee on Taxonomy of
Viruses framework15. While classification of these ‘candidate’
viruses is an important step forward, connecting them to their
relevant hosts will be the next major challenge. Consequently,
there is a need for new toolsets to complement the current
approaches and yet overcome the aforementioned issues to
provide a more comprehensive picture of the viral dynamics.

Here, we examined metatranscriptomes from two highly
productive sites on the east coast of USA—Quantuck Bay, New
York, and Narragansett Bay, Rhode Island. Quantuck Bay
experiences recurring ecosystem disruptive brown tide blooms
caused by the pelagophyte A. anophagefferens16, which are shaped
by a giant virus (AaV)7,17. Narragansett Bay is a highly
productive system with seasonal diatom blooms, but a poorly
described eukaryotic virus community. By employing selection
for polyadenylation before sequencing, we were able to focus on
active virus infections within eukaryotes. Using time-series data,
we captured emergent relationships of putative virus–host
pairings and their ecological dynamics. This approach also
allowed us to characterize viruses with diverse nucleic acid
genomes actively infecting eukaryotes. The results show that this
approach could both confirm known virus–host infections
(including the infection of Aureococcus by AaV) as well as
identify novel virus–host interactions. These observations
demonstrate that the depth of virus–host interaction in the
global oceans is likely much deeper than previously anticipated,
with viruses containing all forms of genetic material potentially
infecting single-celled eukaryotes.

Results
Temporal dynamics of active giant virus infections. To identify
NCLDVs, we screened contig libraries generated at each study site
for 10 conserved NCLDV core genes18. Reads from individual
samples were mapped to the core gene contigs, followed by
library size normalization. At both sites, numerous contigs
originating from NCLDV-specific Major Capsid Protein (MCP)
were identified (Fig. 1). The abundance of reads mapped to MCP
contigs was higher than the sum of mapped reads to all other
NCLDV core gene contigs (Fig. 1) for all samples except QB-S3,
confirming efforts suggesting that MCP is a suitable marker for
NCLDV diversity19 and that the MCP gene is highly expressed20.
Only distant homologues of MCP are present in Poxviridae18 and
there are no homologues in recently discovered Pandora- and
Pithoviruses8: to this end the ubiquity of this gene in all other
NCLDV families makes it an excellent candidate for phylogenetic
probing of metatranscriptomics data.

We placed the MCP contigs on a reference phylogenetic tree and
studied their relative expression levels in terms of a metric that we
defined as ‘rarefied counts per kilobase’ (RCK) (details in Methods
section). Phylogenetic placement of the contigs demonstrated that
NCLDV members from Mimiviridae and Phycodnaviridae were
consistently present in both Quantuck Bay and Narragansett Bay. At
both sites the highest number of contigs fell within the Mimiviridae
family, followed by Phycodnaviridae (Fig. 2). A large number
of contigs had strong phylogenetic affinity to AaV as well as other
alga-infecting members of the Mimiviridae clade. Their presence and
relative abundance in these field surveys demonstrate that the
Mimiviridae are an important component of the marine virosphere
and are as active as the better-studied Phycodnaviridae group.

Brown tide bloom samples collected on 14 June (QB-S1) and
16 June (QB-S2) represented the bloom peak with an Aureococcus
count of B2.28� 106 cells per ml and B2.23� 106 cells per ml,
respectively (Supplementary Fig. 1). The third sample, collected
on 22 June, represented the early stage of bloom demise, with an
Aureococcus count of B1.91� 106 cells per ml. We detected a
persistent infection of A. anophagefferens by AaV across this
sampling period. High stringency (similarity Z97%) mapping of
reads to the genome identified 1,368 and 604 reads that could be
assigned to peak bloom samples QB-S1 and S2, respectively, after
library size normalization, while 236 reads were mapped to the
QB-S3 sample taken during bloom decline (Supplementary
Fig. 2). Across the entire genome, 15 AaV transcripts had more

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16054

2 NATURE COMMUNICATIONS | 8:16054 | DOI: 10.1038/ncomms16054 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


than 10 reads: roughly two-thirds of these transcripts are
hypothetical, having no similarities to genes with known
functions (Supplementary Data 1). Similar observations have
been recorded for Mimivirus: out of 20 most highly expressed
genes, 17 were found to be hypotheticals20. These observations
suggest these genes are active during infection by AaV and other
NCLDVs, and represent important targets for future studies.
Notably, the AaV MCP was among the most highly expressed
functional genes, with 121 total reads mapped to this gene across
the three in situ samples from Quantuck Bay. Both total reads
mapped across the AaV genome (Supplementary Fig. 1) and
specifically to MCP gene (Fig. 2a) progressively declined
throughout the sampling period, with the lowest number of
reads mapped from S3. It may be that AaV activity was present,
but predictably reduced during the bloom decline stage as host
cells containing viral mRNA were destroyed—an observation
further supported by a recent study where AaV amplicons were
only detected during the peak of the bloom19. Overall, these data
reinforce the utility of MCP as a marker, since the MCP dynamics
was consistent with data derived from the full AaV genomic
analysis (Fig. 2). Indeed, further studies are needed to be carried
out in lab-based host-virus systems and in the context of diverse
algal blooms, before we can link the in situ expression of virus
genes to their impact on different stages of a bloom.

With five in situ samples over a period of B4 weeks
(Supplementary Table 1), data from Narragansett Bay allowed us
to observe the temporal dynamics of the NCLDVs. Some members
from Phycodna- and Mimiviridae clades showed persistent
evidence of infection over a prolonged period, while ‘boom-and-
bust’ like relationships4 were possibly present for other members
(Fig. 2b). For example, a number of MCP contigs were consistently
expressed (within an order magnitude) between samples across
time points (for example, blue arrows in Fig. 2b), an observation
supporting the presence of infected hosts. While this scenario is
consistent with a ‘slow-and-steady’ infection dynamic21, it can also
be explained by persistent infections of the plankton—where
ongoing virus production does not necessarily lead to host
(or at least total community) mortality22. The expression of other

phylogenetically distinct markers, however, reflected a ‘boom-and-
bust’ like scenario21, with the expression varying across several
orders of magnitude between time points. One striking example of
such putative ‘boom-and-bust’ scenario was a contig in the
nonalgal Mimiviridae family, where expression decreased by
two orders of magnitudes from 16 May to 21 May and 30 May
(Fig. 2b, red arrow).

Virus infection of single-celled eukaryotes beyond NCLDVs.
The marine virosphere is not limited to dsDNA viruses, as viruses
containing all nucleic acid types (ss- and dsRNA as well as
ssDNA) that infect marine single-celled eukaryotes have been
described9,11. We extended our approach to detect the contigs
that potentially originated from diverse RNA and DNA viruses
other than NCLDVs. RNA viruses have a diverse size range, with
Picornavirales particles as small as B25–30 nm23. Our sample
collection method (Methods section) allowed detection of
both ongoing virus infection (for DNA and RNA viruses) and
cell-surface associated RNA viruses. It is important to mention
that some (þ ) ssRNA viruses have poly-A tailed genomes
(for example, Picorna- and Togaviruses) even outside the host24.
Therefore, owing to their nature, the (þ ) ssRNA viral diversity
captured by this approach reflect both actively replicating and
some surface bound viruses, although this approach will largely
be biased towards poly-A tail containing (þ ) ssRNA virus
genomes, excluding those lacking poly-A tails.

Within our analyses, 579 and 599 contigs from Quantuck Bay
and Narragansett Bay, respectively, were assigned to viruses other
than NCLDVs. The majority of these contigs originated from (þ )
ssRNA viruses, with the main contributors coming from a yet
unclassified group of viruses in the Picornavirales order25.
Unclassified Picornavirales contigs represented 62% of the total
non-NCLDV viral contigs for Quantuck Bay and 74% of this group
for Narragansett Bay. Marine Picornavirales have been shown to
infect diatoms (for example, Chaetoceros sp., Asterionellopsis
glacialis and Rhizosolenia setigera)9 and a marine fungoid protist,
Aurantiotrychium26. The closest phylogenetic relative of this group
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Figure 1 | The abundance of NCLDV core genes within samples. Core genes from Quantuck Bay (a) and Narragansett Bay (b) are indicated on the X-axes

as follows: (A) A32 virion packaging ATPase, (B) VLFT3 like transcription factor, (C) superfamily II helicase II, (D) mRNA capping enzyme, (E) D5 helicase/

primase, (F) ribonucleotide reductase small subunit, (G) RNA polymerase large subunit, (H) RNA polymerase small subunit, (I) B-family DNA polymerase

and (J) Major Capsid Protein (MCP). Abundance of 9 NCLDV core genes, including MCP, in terms of normalized read counts and number of contigs

recovered (up to 100 bp length). The box and whisker plots represent the range of the contig lengths with number of contigs recovered for each gene in

brackets. The filled circles represent the rarefied abundances of each core gene in each sample. No contigs could be detected from myristolyated envelope

protein, a core NCLDV gene. MCP abundances are shown in red, while other core genes are presented in dark grey.
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is Marnaviridae, which currently have only one member—
HaRNAV, that infects the marine raphidophyte Heterosigma
akashiwo10. The second major group of (þ ) ssRNA viruses
belonged to Dicistroviridae family, with 90 and 36 contigs from
Quantuck Bay and Narragansett Bay, respectively (Fig. 3).
Interestingly, the only dsRNA viruses detected in both locations
were similar to viruses in the Totiviridae, Partitiviridae and
Hypoviridae family, which are all known viruses of fungi23. These
viruses may be infecting fungi that are parasitic on algae, as have
been proposed recently for samples collected in the Laurentian
Great Lakes27. While some ssDNA virus contigs from Quantuck
Bay clustered with the Nanoviridae family, others from both
locations did not form any definitive cluster with known circular
DNA viruses, thus potentially representing previously undescribed
circular DNA virus groups in the ocean (Supplementary Fig. 3).
No (–) ssRNA viral contigs were detected19,28.

To assess how the activity of virus groups changed over time, we
measured the proportion of reads that mapped to different virus
groups for each library. In Narragansett Bay, the majority of the
virus reads originated from the unclassified marine Picornavirales
and the Dicistroviridae, Secoviridae and Picornaviridae families
across all the time points (Supplementary Fig. 4). The unclassified
marine Picornavirales group recruited from B68% (NB-S1) to
B98% (NB-S5) of the non-NCLDV viral reads (Supplementary
Fig. 4). In Quantuck Bay, reads from both unclassified marine
Picornavirales and ssDNA viruses dominated libraries during the
first two time points (Supplementary Fig. 5). However, a shift in the
proportional abundance of virus reads was observed on the third
day (QB-S3), when the unclassified marine Picornavirales became

dominant (93% of the non-NCLDV virus transcripts,
Supplementary Fig. 5). Overall, 2.4% of the entire QB-S3 library
(B4.3 million fragments) mapped to these unclassified Picornavir-
ales, relative to 0.043 and 0.027% of reads for QB-S1 and QB-S2,
respectively. This indicated a striking increase, concordant with
the decline of the brown tide bloom. Phylogenetic analysis
confirmed these ssRNA viral contigs to be consistent with the
unclassified Picornavirales group (Fig. 3a). Aureococcus blooms
include diatoms, dinoflagellates and high densities (B104 cells per
ml) of heterotrophic protists alongside Aureococcus19,29. The
striking increase in the unclassified Picornavirales could be related
to infection of a host that co-occurs with Aureococcus and the
potential shift in competition that might occur during Aureococcus
bloom decline. These observations suggest a broad ecological role
for viral infection during phytoplankton bloom decline, which
would not have been resolved with targeted studies of AaV or
metagenomic approaches. Taken together, the apparent dynamics
and abundance of this unclassified Picornavirales suggest this group
is a major component of the marine virioplankton, and strengthens
previous observations that the Picornavirales phylogenetically
distinct from the established families can be dominant members
in different marine environments12,30. Owing to their small size,
detection and quantification of RNA viruses and ssDNA viruses
pose significant technical challenges30. Our results, however, clearly
point to the power of screening metatranscriptomes for the
simultaneous analysis of the dynamics of a large cross-section
DNA and RNA viruses.

Eighteen of the assembled contigs (nine from each site) were
47,000 bp and had best hits to different Picornavirales members.
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Figure 2 | Phylogenetic reconstruction of NCLDV major capsid protein sequences. Phylogenetic placement of MCP contigs from (a) Quantuck Bay and

(b) Narragansett Bay on a reference tree of NCLDVs with icosahedral capsids. Node support (aLRT-SH statistic) 450% are shown as dark circles. Contigs upto
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coexistence with the host/persistent infection across multiple time points, while the red arrow denotes a contig with putative ‘boom-and-bust’ like expression.

Reference sequences are in bold italic typeface. Abbreviations with NCBI accession numbers: MsV-Marseillevirus (YP_003407071.1), LauV: Lausannevirus

(YP_003407071.1), Ws Irido: Weisenia iridescent virus (YP_003407071.1), SG Irido: Singapore Grouper iridescent virus (YP_003407071.1), He Asco:

Heliothis virescens Ascovirus (YP_003407071.1), AsfV: African swine fever Virus (NP_042775.1), EhV86: Emiliania huxleyi Virus 86 (NP_042775.1), HaV01:

Heterosigma akashiwo Virus 01 (NP_042775.1), PBCV1: Paramacium bursaria Chlorella Virus 1(NP_042775.1), ATCV 1: Acanthocystis turfacea chlorella Virus 1

(NP_042775.1), BpV1: Bathycoccus prasinos Virus 1 (NP_042775.1), MpV12T: Micromonas pusilla Virus 12T (NP_042775.1), OlV1: Ostreococcus lucimarinus

Virus 1 (NP_042775.1), AaV: Aureococcus anophagefferens Virus (AaV) (YP_009052173.1), CeV: Chrysochromulina ericina Virus (NP_042775.1), PpV:

Phaeocystis pouchetii Virus (NP_042775.1), PgV: Phaeocystis globosa Virus (NP_042775.1), PoV: Pyramimonas orientalis Virus (NP_042775.1), Mega:

Megavirus chilensis (NP_042775.1), Moumou: Moumouvirus goulette (AGF85360.1), Mimi: Mimivirus (AAV50707.1), CroV: Cafeteria roenbergensis Virus

(YP_003969975.1).
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Phylogenetic analysis based on the RNA-dependent RNA
polymerase (RdRp) gene and feature analysis of existing (þ )
ssRNA virus genomes suggested that these contigs are complete
or near-complete Picornavirales genomes (Fig. 4). While
the possibility of errors in assembly (for example, chimeras)
from a mixed community cannot be ignored, bioinformatic
analyses support the legitimacy of these genomes. The domain
architecture of the protein coding genes in these genomes match
the known (þ ) ssRNA virus domain organizations. Specifically,
the domains characteristic of structural and nonstructural
CDSs are restricted to the corresponding CDSs (Fig. 4). It is
likely, however, that on a base-by-base level any individual
viral genomes assembled from environmental data sets
(whether metagenomes or metatranscriptomes) could represent
‘genomic averages’ (or a genomic composite) of multiple strains
of the same virus, essentially ignoring the strain-specific
heterogeneities (that is, single nucleotide polymorphisms).
Sixteen of these genomes were dicistronic—they harboured
two ORFs coding for structural and nonstructural proteins, while
the remaining two were monocistronic (Fig. 4), revealing
differences in genome architecture among group members
(Fig. 4). Remarkably, one virus (N_001) had a reverse orientation
of the genes with the first ORF encoding for the structural
protein, which is unusual for dicistronic Picornavirales31. In
addition, a glycosyl transferase domain was found in N_137
(Fig. 4). To our knowledge, the presence of glycosyltransferase
domains has only been reported in members of the
Endornaviridae family dsRNA viruses32.

We also tracked the dynamics of these de novo assembled
genomes by mapping the data collected over spatiotemporal
gradients. All the (þ ) ssRNA virus genomes from Quantuck Bay
samples showed higher relative expression during bloom decline
(QB-S3) compared to the time points corresponding to the bloom
peak (Fig. 4, panel C). N_001, a candidate virus from
Narragansett Bay, was not present in the first three time points.
Its expression was only observed during the fourth sampling
point, which was followed by a dramatic increase during the last
sampling point, when it recruited B0.55% of the reads from the

entire library (Fig. 4, panel C). The closest known phylogenetic
relative of N_ 001 is a virus infecting diatom A. glacialis (Fig. 4),
suggesting the putative host may be a diatom. Narragansett Bay
was experiencing a spring diatom bloom during the sampling
period with ‘boom-and-bust’ abundance cycles in the relative
abundance of putative diatom hosts28, consistent with these
observed viral dynamics.

Discussion
This study presented the opportunity to evaluate relationships
among diverse single-celled eukaryotes and their pathogens,
with the established AaV-Aureococcus association acting as a
de facto internal standard. Transcripts from DNA viruses
must originate within the host cells, and thereby, for a particular
host-virus pair, a significant and strong positive correlation is to be
expected for gene expression. Building on this idea, host gene
expression of at least a subset of the host’s genome is a prerequisite
to observe gene expression of a virus specific to that host, as
evidenced by transcriptomic landscape of host-virus dynamics in
culture20,33 and induced blooms in mesocosms34. To expand our
data, we also took advantage of concurrent nutrient amendment
studies in mesocosms (see Methods section), which provided
additional samples for our analyses. Brown tides are characterized
by high abundance of other single-celled eukaryotes alongside
Aureococcus19. At the same time, a dynamic community harbou-
ring diatoms, dinoflagellates, chlorophytes and ochrophytes was
observed in the Narragansett Bay samples analysed in this study28.
Thus, the protist communities in these sites potentially include the
hosts of the viruses that we detected.

We inspected statistical co-occurrences among the
contigs containing virus and eukaryote-specific marker genes
based on their expression patterns. Since the poly-A-selected
metatranscriptomes are largely depleted of ribosomal RNA
marker genes, we employed functional genes suitable for
phylogenetic analysis. Expression of MCP (dsDNA NCLDVs),
RdRP (RNA viruses) and viral replicase (ssDNA viruses) were
compared to the functional eukaryotic marker gene RNA
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polymerase II large subunit (RPB1, Supplementary Fig. 6), a
candidate gene to resolve the phylogenetic history of different
eukaryotic lineages35,36. Hierarchical clustering of a Pearson’s
correlation matrix followed by SIMPROF analysis37 was used to
detect statistically distinct clusters that contained both virus
and eukaryotic marker genes that could be classified into
phylogenetic groups. This analysis produced several statistically
distinct clusters harbouring both viral and eukaryotic contigs
(Fig. 5). A single cluster (Fig. 5a(ii)) harboured both AaV and
Aureococcus, validating that established ecologically relevant
relationships between viruses and their hosts can be retrieved
using this approach.

Close inspection revealed other interesting relationships among
the coexisting eukaryotic and viral components. Cluster A(ii),
while containing both Aureococcus and AaV, also contained
another Mimiviridiae member, several ssDNA and (þ ) ssRNA
viral contigs along with eukaryotes belonging to prasinophyceae
and pelagophyceae (Fig. 5). The possibility of Aureococcus being
infected by more than one virus type cannot be discounted
(and indeed is perhaps likely). Moreover, the potential for AaV
to infect closely related pelagophytes remains a possibility

(although this has not been seen in lab studies)38. One cluster,
A(i), which contained both a Phycodna- and a Mimiviridae
member, also included a RPB1 contig phylogenetically placed
in the Cercozoa group (Fig. 5). Although no cercozoan
host-NCLDV pairs currently exist in culture, a recent study
showed integration of NCLDV genes in the genome of a
cercozoan Bigelowella natans39. This integrated NCLDV in the
B. natans genome potentially belongs to the Phycodnaviridae, as
revealed by the same study through phylogenetic analysis of the
MCP gene. Our observation supports the possibility that there
might be yet to be discovered cercozoan-Phycodnaviridae
interactions.

Similar clusters of phylogenetically distinct eukaryotes
and viruses were also found in Narragansett Bay. For example,
cluster B(iii) contained a Mimiviridae and several ssRNA viral
contigs connected to choanomonada, stramenopile, diatom and
dinoflagellate members (Fig. 5). The majority of the eukaryotic
contigs belonged to diatoms and dinoflagellates in the
Narragansett Bay samples, which reflects the composition of
single-celled eukaryotes in this site28. A large number of contigs
having phylogenetic affinity to choanomonada were found in
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both Quantuck Bay and Narragansett Bay locations and were
represented in several of the representative SIMPROF clusters
(Fig. 5). While larger networks of viruses and eukaryotes
also existed, clusters with fewer members revealed more specific
relationships. For example, cluster B(xiv) contained one
Mimiviridae, one jakobida (heterotrophic flagellate) and several
diatom contigs (Fig. 5). To date the obligate heterotrophs
known to be infected by Mimiviridae members are Cafeteria
roenbergensis40, Acanthamoeba41 and Vermaamoeba spp42.
Additionally; Cluster B(xviii) harboured a ssDNA virus, a strame-
nopile and a choanomonada member, while cluster B(xxii)
revealed a one-to-one relationship between a Mimiviridae and a
dinoflagellate (Fig. 5). Only one dinoflagellate—Heterocapsa
circularisquama—has been shown to be infected by a
NCLDV43, so this potential host-virus pair is of particular note.
Cluster B(x) and B(xvii) consisted of Mimiviridae, diatoms and
ssRNA viruses. No diatom is yet known to be infected by a
NCLDV, although a large number of ssRNA viral contigs in our
study are phylogenetically close to diatom-infecting RNA viruses
in the unclassified marine picornavirales group (Fig. 3).
A number of clusters (for example, B(xii)) were enriched with
both ssRNA virus and diatom contigs. These relationships
between ssRNA viruses and the eukaryotes need to be
interpreted with caution, however, as these contigs might
originate both from free virus particles and/or viruses
within hosts.

Several clusters also contained fungal contigs along with other
eukaryotes—pointing to the possibility of broad parasitic

relationships with phytoplankton and other single-celled
eukaryotes. The AaV-Aureococcus cluster A(ii) harboured a
fungal contig and a Barnaviridae member—a virus family with
fungi as the only known hosts (Fig. 5)23. Several other clusters, for
example, A(iii) and B(vii) also contained fungal contigs. While
such observations are not definitive, they point to the existence of
parasitic relationships resulting in complicated ecological
interactions involving unicellular eukaryotes, fungi and fungal
viruses in marine ecosystems27.

Increased sample resolution in the future will resolve more
statistically robust relationships, which can further narrow
potential interacting partners. One limitation of reference-
independent assembly of high-throughput data is fragmented
contigs originating from same transcript—which is illustrated by
two Aureococcus specific RPB1 contigs in cluster A(ii) that
originated from a single coding sequence. Increased sequencing,
along with the continued development of assembly tools, will
provide better resolution to these relationships. These limitations
notwithstanding, the analysis provides a ‘proof-of-principle’ for
inferring the complex relationships among diverse unicellular
eukaryotes and their viruses using metatranscriptome data.

In this study, we demonstrate how metatranscriptomics can
provide a unique view of the marine virosphere by simultaneously
detecting multiple viral infections across the landscape of the
eukaryotic plankton within an ecosystem setting. This effort can
largely overcome previous technical limitations involved in the
study of different viral groups, owing to their size range and
genome type, within the same sample. In the last two decades, we
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have learned much regarding the diversity and dynamics of the
phages in the ocean, but the eukaryotic virosphere has remained
elusive, with little known about who is infecting whom in the
environment44. As demonstrated in our study, analysing the vast
wealth of information captured by metatranscriptomics, in a
statistical framework, can be an important step towards
answering this vital question.

Methods
Experimental design. Samples were collected from a brown tide bloom in
Quantuck Bay (Latitude¼ 40.806395; Longitude¼ � 72.621002), NY that
occurred from late May to early July, 2011, covering the initiation, peak and demise
of the bloom. Samples collected on June 14 (BT-S1) and June 16 (BT-S2)
represented the peak of the bloom, while sample collected on June 22 (BT-S3)
represented the initial phase of bloom decline. Aureococcus cells were counted from
glutaraldehyde (1% final v/v) fixed whole water samples using an enzyme-linked
immunosorbent assay (ELISA) with a monoclonal antibody as described
previously45. Briefly, 1:1,000 fold dilution of the environmental samples were made
in phosphate buffer saline Tween 20. The samples were stained with the fluorescein
isothiocyanate conjugated monoclonal antibody for 30 min. Aureococcus cells were
then identified and counted if they fell within a defined region in the side scatter—
FL1 (green light, 500–560 nm) plot. In situ samples from June 22nd (third sampling
point) was also used to carry out nutrient amendment experiments—results from
these samples were included to both expand the environmental conditions sampled
(for a similar population) as well as to increase the total number of individual
samples (and thus statistical power) for analyses. Briefly, bottles were filled with
natural sea water from the bloom and were amended with 25 mM ammonium only
(þN), 4 mM phosphate only (þP) and 25mM ammonium and 4 mM phosphate
(þN&P) in triplicate. Three additional bottles with no nutrient addition were used
as control. The samples were then incubated for 24 h in a floating chamber at 0.5 m
in eastern Shinnecock Bay at the Stony Brook—Southampton Marine Science
Center under one layer of neutral density cover to mimic the light and temperature
levels of Quantuck Bay. Samples for Aureococcus cell density measurement and
total RNA extraction were collected at T¼ 0 and T¼ 24 h. Approximately 25 ml of
natural seawater from each of the in situ and nutrient amendment samples were
prefiltered through 5 mm polycarbonate (PC) filters and collected on 0.2 mm PC
filters. The samples were flash frozen immediately after filtration and transferred to
� 80 �C. Prior RNA extraction, CTAB buffer (Teknova, CA, USA) amended by
polyvinylpyrrolidone (1% mass/vol) was added to each of the samples.

The detailed sampling procedure for Narraganset Bay has been previously
described in Alexander et al.28. Samples were collected from a long term sampling
site in Narragansett Bay (41�340120 0 N, 71�230240 0 W) during 2012 on May 16
(NB-S1), May 21 (NB-S2), May 30 (NB-S3), June 4 (NB-S4) and June 8 (NB-S5).
Sample collection and processing was completed within 0830 and 0900 local time
to reduce the influence of diel signals. Two litre of water from each sample was
filtered on 5.0-mm pore size PC filters using a peristaltic pump. The filters were
snap frozen in liquid nitrogen and stored at � 80 �C until RNA extraction. Water
collected along with NB-S3 was also used for nutrient amendment experiments.
For this, triplicate 2.5 l bottles were filled with water prefiltered through a 200-mm
mesh and amended with specific nutrients to create þN, þP, –N, –P treatments
alongside an ambient control. The þN and þ P treatments were designed to
eliminate nitrogen and phosphate stress signals, whereas the –N and –P treatments
were designed to drive the treatments towards each limitation, respectively, by
skewing the nutrient ratios28. N and P amendment concentrations were B10-fold
the seasonal average N and P concentrations measured at the station II in the
surface waters of Narragansett Bay. The þ P and þN amendment contained 3 mM
phosphate and 10mM nitrate, respectively. The –P amendment contained 10 mM
nitrate, 68mM silica, 4.6 mM iron and f/5 vitamins. The –N treatment was amended
with 3 mM phosphate, 68 mM silica, 4.6 mM iron and f/5 vitamins. The f/5 media
ratios46 were followed for silica, iron and vitamin amendments. Bottles were
incubated for 48 h in a flow-through incubator at ambient temperature and
photosynthetically active radiation. After the end of the incubation, treated and
control samples were filtered and stored for RNA extraction in the same manner
for the in situ samples.

RNA extraction and sequencing. RNA was extracted from Quantuck Bay
samples using the UltraClean Plant RNA Isolation Kit (MO BIO Laboratories,
CA, USA) according to manufacturer’s protocol. RNA samples were quantified
spectrophotometrically and were sequenced in the Columbia Sequencing Center
(NY, USA) using Illumina HiSeq platform with poly-A enrichment at a depth of
B50 million 100 bp single end reads. Two more replicate samples were sequenced
from June 22 (QB-S3) at a depth of 100 million reads. For the present study, these
biological replicates from QB-S3 were pooled together before further analysis.

For Narragansett Bay, replicate filters from each treatment and in situ samples
were pooled, representing 6 l of water for each sample. RNA was extracted using
RNeasy Mini Kit (Qiagen, Hilden, Germany) according to a modified yeast RNA
extraction protocol. Briefly, lysis buffer and RNA-clean zircon beads were added to
the filter. Samples were then vortexed for 1 min, placed on ice for 30 s, and then

vortexed again for 1 min. The resulting RNA was eluted in water and possible DNA
contamination was removed using a TURBO DNA-free Kit (Thermo Fisher
Scientific, MA, USA). RNA from each triplicate was pooled by sample or treatment.
41,000 ng RNA from each sample then went through a poly-A selection using
oligo-dT beads followed by library preparation with TruSeq RNA Prep Kit
(Illumina, CA, USA). The samples were sequenced with an Illumina HiSeq2000
at the Columbia University Genome Center to produce B60 million; 100 bp
paired-end reads per sample.

Read assembly and screening. For bioinformatics analyses, sequence reads from
both locations were quality trimmed (stringent trimming (quality score r0.03), No
‘N’s allowed, 70 bp size cutoff) in CLC genomics workbench 8.0 (Qiagen, Hilden,
Germany). The data from all the Quantuck Bay samples were combined and
assembled together, and a similar assembly procedure was also followed for the
Narragansett Bay specific samples. This resulted in 2,455,926 contigs for Quantuck
Bay and 9,525,233 contigs for Narragansett Bay at a 100 bp size cutoff.

Most giant virus genomes contain multiple genes having domains characteristic of
viral capsids. Among the capsid orthologues, protein ‘VP54’ (in Paramacium
bursaria Chlorella Virus—PBCV, NCBI accession: BAA22198) and ‘D13L’ protein of
Mimivirus (NCBI ID: AAV50707) have been experimentally and bioinformatically
characterized to be the MCP47,48, which encode the monomer of the icosahedral
capsid of these viruses. One orthologue in other Phycodnaviridae and Mimiviridae
members shows high similarity to PBCV VP54 and Mimivirus D13L, implying a
common ancestor49,50. As well, the genomes of Marseilleviridae, Iridioviridae and
Ascoviridae members have only a single capsid homologue annotated as MCP.
Finally, representative Asfarviridae member African swine fever virus harbours a
single capsid gene, also known to encode the major structural component51. On the
basis of this information, we first screened for putative MCP orthologues (one in each
virus) in the sequenced NCLDVs from different families. A HMM profile was created
after aligning the amino-acid sequences of the detected MCP reference orthologues.
This HMM profile was queried against the translated contig libraries from Quantuck
Bay and Narragansett Bay to select the putative MCP candidate contigs using
HMMER52. Contigs identified went through an additional screening step—they were
searched using BLASTP against the NCBI nr database. Those with best hits only to
the putative MCP orthologues were retained for analysis.

For selecting eukaryotic RPB1 contigs, HMM profile specific to domain
‘RPB1-C-term (NCBI CDD ID: cd02584)’ and ‘RPB1-N-term (NCBI CDD ID:
cd02733)’ was used to query the contig libraries. All the MCP and RPB1 candidate
contigs detected in this manner were queried against NCBI Refseq database and
only contigs with first BLASTx hits (e-value cutoff r10–3) to MCP and RPB1 were
kept for further analysis.

To detect contigs originating from viruses other than NCLDVs, we combined the
proteins derived from all the viruses having algal, fungal and protozan hosts available
on NCBI database. This protein database was queried against the contig libraries
using tBLASTn with an e-value cutoff of r10–3. All the candidate contigs screened
by this procedure were then queried against NCBI Refseq database using BLASTx.
Only contigs having topmost hits to different viruses were kept for further analysis.
All these contigs had best hits to diverse eukaryotic viruses- no hits to prokaryotic
viruses were detected. This is probably due to the nature of the query data set, which
contained proteins exclusively from viruses infecting algae, fungi and protists.
These virus contigs were binned into distinct viral groups according to their best
BLASTx hits. Percentage of reads recruited to individual viral groups was calculated
for determining proportional abundance of different viral groups over different
time points. For detailed phylogenetic analysis of ssRNA and ssDNA viruses,
subset of these contigs harbouring RdRP (pfam id: PF05183) and viral replicase
(pfam: PF03090) motif were selected using HMM profile specific to these motifs.

Genomic and phylogenetic analysis. To reconstruct phylogenies, reference
sequences for MCP (giant viruses), RdRP (RNA viruses), viral replicase
(ssDNA virus) and RPB1 (eukaryotes) were downloaded from NCBI Refseq
database. A number of RPB1 sequences representing several eukaryotic groups
were also collected from Marine Microbial Eukaryotes Transcriptome Sequencing
Project (MMETSP)53 peptide collections, for which no representative genomes are
available. The reference sequences were aligned in MEGA 6.0 (ref. 54). Maximum
likelihood phylogenetic trees were constructed in PhyML55 with LG model, gamma
shape parameter and frequency type estimated from the data. aLRT-SH like
statistic was calculated for branch support. The eukaryotic classification scheme by
Adl et al.56 was followed. Selected contigs were translated to amino-acid sequences
and were placed on the reference trees in a maximum likelihood framework using
pplacer57. The placement files were converted to trees with pendant edges showing
the best placement of the contigs using ‘guppy’ tool of pplacer. The placement trees
were visualized and annotated using iTOL interface58.

For the complete or near-complete Picornavirales genomes ORFs were
predicted on using CLC genomic workbench 8.0 (www.clcbio.com). The genome
annotation with predicted features was assisted by pfam59 and Conserved Domain
Database (CDD)60 search.

Statistical analysis. Quality trimmed reads were mapped to the selected viral
and eukaryotic contigs from individual read libraries with high stringency
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(97% identify, 70% length fraction matching) in CLC genomics workbench 8.0. The
read mapping values were normalized by library size and length and expressed as
RCK. RCK values of viral and eukaryotic contigs 4225 base pairs were converted
into matrices separately for Quantuck Bay and Narragansett Bay data sets, which
included mapping statistics from both in situ and nutrient amendment libraries.
Group averaged hierarchical clustering was performed on these matrices using
Pearson’s correlation coefficient in PRIMER 7.0. SIMPROF test37 was applied on
the clusters with 5% significance level and 1,000 permutations to identify
statistically distinct clusters. Selected clusters were visualized and annotated in
Cytoscape 3.0 (ref. 61).

Data availability. The field sequence data reported in this paper have been
deposited in the National Center for Biotechnology Information Sequence Read
Archive, www.ncbi.nlm.nih.gov/sra (Narraganset Bay accession no. SRP055134;
Quantuck Bay accession no. SRP072764). The genomes are submitted in the
NCBI database under the accession numbers: KY286099—KY286107 and
KY130489—KY130497.
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