25 research outputs found

    Photogrammetric technique for in-flight ranging of trailing vortices using entrained balloons

    Get PDF
    A method for experimentally determining the radial distance of a probe aircraft from a trailing vortex is described. The method relies on photogrammetric triangulation of targets entrained in the vortex core. The theory and preliminary testing were described using laboratory mock-ups. Solid state video cameras were to provide data at 300 Hz rates. Practical methods for seeding the vortex are under separate investigation and are not addressed

    Recent flow visualization studies in the 0.3-m TCT

    Get PDF
    Light beams are altered by refractive index changes; flow induced refractive index changes provide the impetus for conventional visualization techniques such as schlieren and shadowgraph. Unfortunately effects related to the flow can be masked by refractive index inhomogeneities external to the test section. A simple shadowgraph scheme was used to assess the flow quality of the Langley 0.3 meter Transonic Cryogenic Tunnel. When the penetration tubes were evacuated the quality of the shadowgraph improved dramatically

    Implementation of a Pulsed-Laser Measurement System in the National Transonic Facility

    Get PDF
    A remotely-adjustable laser transmission and imaging system has been developed for use in a high-pressure, cryogenic wind tunnel. Implementation in the National Transonic Facility has proven the system suitable for velocity and signal lifetime measurements over a range of operating conditions. The measurement system allows for the delivery of high-powered laser pulses through the outer pressure shell and into the test section interior from a mezzanine where the laser is free from environmental disturbances (such as vibrations and excessive condensation) associated with operation of the wind tunnel. Femtosecond laser electronic excitation tagging (FLEET) was utilized to provide freestream velocity measurements, and first results show typical data that may be obtained using the system herein described

    Feasibility of Rayleigh Scattering Flow Diagnostics in the National Transonic Facility

    Get PDF
    Laser-based Rayleigh light scattering (RLS) was performed in the National Transonic Facility (NTF) at NASA Langley Research Center. The goal was to determine if the free-stream flow undergoes clustering (early stage of condensation from gas to liquid) or remains in a pure diatomic molecular phase. Data indicate that clusters are not observable down to levels of 10% of the total light scatter for a variety of total pressures at one N2 cryogenic-mode total temperature (Tt = -50 F = 227 K) and one air-mode temperature (Tt = +130 F = 327 K). Thus RLS appears viable as a qualitative or quantitative diagnostic for flow density in NTF in the future. Particles are distinguished from optically unresolvable clusters because they are much larger and individually resolvable in the laser beam image with Mie scattering. The same RLS apparatus was also used, without modification, to visualize naturally occurring particles entrained in the flow for both cryogenic and air-modes. Estimates of the free-stream particle flux are presented, which may be important for interpretation of laminar-to-turbulent boundary-layer transition studies.

    of

    No full text
    influence of storage media on the accuracy and repeatabilit

    Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach

    No full text
    A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts

    Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach

    No full text
    A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically &lt; 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts. Nomenclature A, B = PSP calibration coefficients with arbitrary pressure referenc

    Steps Toward Determinaton of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. V. Variability of the Ultraviolet Continuum and Emission Lines of NGC 3783

    Get PDF
    We report on the results of intensive ultraviolet spectral monitoring of the Seyfert 1 galaxy NGC 3783. The nucleus of NGC 3783 was observed with the International Ultraviolet Explorer satellite on a regular basis for a total of 7 months, once every 4 days for the first 172 days and once every other day for the final 50 days. Significant variability was observed in both continuum and emission-line fluxes. The light curves for the continuum fluxes exhibited two well-defined local minima or dips, the first lasting ≤20 days and the second ≤ 4 days, with additional episodes of relatively rapid flickering of approximately the same amplitude. As in the case of NGC 5548 (the only other Seyfert galaxy that has been the subject of such an intensive, sustained monitoring effort), the largest continuum variations were seen at the shortest wavelengths, so that the continuum became harder when brighter. The variations in the continuum occurred simultaneously at all wave-lengths (Δt \u3c 2 days). Generally, the amplitude of variability of the emission lines was lower than (or comparable to) that of the continuum. Apart from Mg II (which varied little) and N v (which is relatively weak and badly blended with Ly∝), the light curves of the emission lines are very similar to the continuum light curves, in each case with a small systematic delay or lag. As for NGC 5548, the highest ionization lines seem to respond with shorter lags than the lower ionization lines. The lags found for NGC 3783 are considerably shorter than those obtained for NGC 5548, with values of (formally) ~0 days for He II + O III] , and ~4 days for Ly∝ and C IV. The data further suggest lags of ~4 days for Si IV + O IV] and 8-30 days for Si III] + C III]. Mg II lagged the 1460 Å continuum by ~9 days, although this result depends on the method of measuring the line flux and may in fact be due to variability of the underlying Fe II lines. Correlation analysis further shows that the power density spectrum contains substantial unresolved power over timescales of ≤ 2 days, and that the character of the continuum variability may change with time
    corecore