22,221 research outputs found

    Observation of Bell Inequality violation in B mesons

    Full text link
    A pair of B0Bˉ0B^0\bar B^0 mesons from Υ(4S)\Upsilon(4S) decay exhibit EPR type non-local particle-antiparticle (flavor) correlation. It is possible to write down Bell Inequality (in the CHSH form: S2S\le2) to test the non-locality assumption of EPR. Using semileptonic B0B^0 decays of Υ(4S)\Upsilon(4S) at Belle experiment, a clear violation of Bell Inequality in particle-antiparticle correlation is observed: S=2.725+-0.167(stat)+-0.092(syst)Comment: Conference Proceeding for Garda Lake Workshop 2003 "Mysteries, Puzzles and Paradoxes in Quantum Mechanics

    Optimal entanglement manipulation via coherent-state transmission

    Full text link
    We derive an optimal bound for arbitrary entanglement manipulation based on the transmission of a pulse in coherent states over a lossy channel followed by local operations and unlimited classical communication (LOCC). This stands on a theorem to reduce LOCC via a local unital qubit channel to local filtering. We also present an optimal protocol based on beam splitters and a quantum nondemolition (QND) measurement on photons. Even if we replace the QND measurement with photon detectors, the protocol outperforms known entanglement generation schemes.Comment: 5 pages, 1 figur

    Structure functions near the chiral limit

    Full text link
    We compute hadron masses and the lowest moments of unpolarized and polarized nucleon structure functions down to pion masses of 300 MeV, in an effort to make unambiguous predictions at the physical light quark mass.Comment: 3 pages, 3 figures, Lattice2002(matrixel

    Individual differences and cognitive load

    Get PDF

    New selection rules for resonant Raman scattering on quantum wires

    Full text link
    The bosonisation technique is used to calculate the resonant Raman spectrum of a quantum wire with two electronic sub-bands occupied. Close to resonance, the cross section at frequencies in the region of the inter sub-band transitions shows distinct peaks in parallel polarisation of the incident and scattered light that are signature of collective higher order spin density excitations. This is in striking contrast to the conventional selection rule for non-resonant Raman scattering according to which spin modes can appear only in perpendicular polarisation. We predict a new selection rule for the excitations observed near resonance, namely that, apart from charge density excitations, only spin modes with positive group velocities can appear as peaks in the spectra in parallel configuration close to resonance. The results are consistent with all of the presently available experimental data.Comment: 7 pages, 2 figure

    Generation of bipartite spin entanglement via spin-independent scattering

    Get PDF
    We consider the bipartite spin entanglement between two identical fermions generated in spin-independent scattering. We show how the spatial degrees of freedom act as ancillas for the creation of entanglement to a degree that depends on the scattering angle, θ\theta. The number of Slater determinants generated in the process is greater than 1, corresponding to genuine quantum correlations between the identical fermions. The maximal entanglement attainable of 1 ebit is reached at θ=π/2\theta=\pi/2. We also analyze a simple θ\theta dependent Bell's inequality, which is violated for π/4<θπ/2\pi/4<\theta\leq\pi/2. This phenomenon is unrelated to the symmetrization postulate but does not appear for unequal particles.Comment: 5 pages and 3 figures. Accepted in PR

    Quantum energy teleportation in a quantum Hall system

    Full text link
    We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters

    Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi

    Get PDF
    We characterised and compared dimethylsulfoniopropionate (DMSP) lyase isozymes in crude extracts of 6 axenic Emiliania huxleyi cultures (CCMP 370, 373, 374, 379, 1516, and strain L). This enzyme cleaves DMSP to form dimethyl sulfide (DMS), acrylate and a proton, but the function of this reaction in algae is still poorly understood. Most of the cultures produced high concentrations of intracellular DMSP, which was constant over the growth cycle and ranged from 157 to 242 mM, except for 1516 which had 50 mM DMSP cell-1. Extracts of all strains produced DMS from exogenous DMSP in vitro. DMSP lyases appeared constitutive, but enzyme activity and behaviour varied greatly among strains, and did not correlate with intracellular DMSP concentration. Strains 373 and 379 showed high DMSP lyase activities (12.5 and 6.1 fmol DMS cell-1 min-1, respectively), whereas DMS production was more than 100-fold lower in 370, 374, 1516 and L. This difference was intrinsic and the general pattern of high- and low-activity strains remained true over more than a 1 yr cultivation period. The cleavage reaction was optimal at pH 6 in the strains with high lyase activity and pH 5 was optimal for 374, 1516 and L. Strain 370 showed increasing activity with increasing pH. Experiments with additions of 0.125 to 2 M NaCl indicated halotolerant DMSP lyases in 373, 379 and 374. However, the halophilic DMSP lyases in 370 and L required 1 M NaCl addition for optimal DMSP cleavage, and 1516 showed optimal activity at 2 M NaCl. These results suggest that there are several structurally different DMSP lyase isozymes within E. huxleyi. However, it cannot be ruled out that varying concentrations of DMSP lyase per cell may have contributed to the differences in enzyme activity per cell. Comparison with other algal taxa indicates several families of DMSP lyases, hinting at possibly different cellular locations and functions, and varying DMS production under natural conditions

    Surface orbitronics: new twists from orbital Rashba physics

    Full text link
    When the inversion symmetry is broken at a surface, spin-orbit interaction gives rise to spin-dependent energy shifts - a phenomenon which is known as the spin Rashba effect. Recently, it has been recognized that an orbital counterpart of the spin Rashba effect - the orbital Rashba effect - can be realized at surfaces even without spin- orbit coupling. Here, we propose a mechanism for the orbital Rashba effect based on sp orbital hybridization, which ultimately leads to the electric polarization of surface states. As a proof of principle, we show from first principles that this effect leads to chiral orbital textures in k\mathbf{k}-space of the BiAg2_2 monolayer. In predicting the magnitude of the orbital moment arising from the orbital Rashba effect, we demonstrate the crucial role that the Berry phase theory plays for the magnitude and variation of the orbital textures. As a result, we predict a pronounced manifestation of various orbital effects at surfaces, and proclaim the orbital Rashba effect to be a key platform for surface orbitronics
    corecore