56 research outputs found

    Ovarian Fibroma with Meigs Syndrome associated with Elevated CA125 - A Rare Case

    Get PDF
    Postmenopausal women with solid adnexal masses, ascites and pleural effusion with elevated CA 125 are highly suggestive for malignant ovarian tumor. However in literature 28 cases Meigs syndrome (Benign ovarian tumor, ascites and right pleural effusion) with raised CA 125 have been reported. We report a case of Meigs syndrome caused by right ovarian fibroma with elevated serum CA125 level in a postmenopausal woma

    Primary Fallopian Tube Carcinoma

    Get PDF
    Primary Fallopian Tube Carcinoma (PFTC) is rare and accounts for about 0.3% of all gynecologic cancers. Less than 1500 cases have been reported in the literature. It arises in postmenopausal women and typically presents with abdominal pelvic pain, vaginal bleeding and watery discharge. However, a correct diagnosis is rarely achieved preoperative, and in many cases, the diagnosis is made after incidental surgery for unrelated conditions commonly being ovarian carcinoma . Compared with ovarian carcinoma, PFTC more often presents at early stages, but it has a worse prognosis. PFTC is usually managed in the same manner as ovarian cancer. We report a case of Left PFTC that presented as Left ovarian mass, and we briefly review the literature

    Ganglioneuroma Always A Histopathological Diagnosis

    Get PDF
    Neuroblastoma, ganglioneuroblastoma and ganglioneuroma arise from sympathetic tissue in the neck, posterior mediastinum, adrenal gland, retroperitoneum and pelvis Ganglioneuromas are commonly seen in childhood. They are highly differentiated benign tumors and are compatible with long-term disease free survival. Retroperitoneal localization is relatively frequent for these tumors. Due to its rarity and lack of specific radiological findings diagnosis is always postoperative. Here, we present a case of Retroperitoneal ganglioneuroma which was undiagnosed before surgery

    Time Domain Signal Detection for MIMO OFDM

    Get PDF
    The MIMO techniques with OFDM is regarded as a promising solution for increasing data rates, for wireless access qualities of future wireless local area networks, fourth generation wireless communication systems, and for high capacity, as well as better performance. Hence as part of continued research, in this paper an attempt is made to carry out modelling, analysis, channel matrix estimation, synchronization and simulation of MIMO-OFDM system. A time domain signal detection algorithm can be based on Second Order Statistics (SOS) proposed for MIMO-OFDM system over frequency selective fading channels. In this algorithm, an equalizer is first inserted to reduce the MIMO channels to ones with channel length shorter than or equal to the Cyclic Prefix (CP) length. A system model in which the ith received OFDM block left shifted by j samples introduced. MIMO OFDM system model which uses the equalizer can be designed using SOS of the received signal vector to cancel the most of the Inter Symbol Interference (ISI). The transmitted signals are then detected from the equalizer output. In the proposed algorithm, only 2P (P transmitted antennas / users in the MIMO-OFDM system) columns of the channel matrix need to be estimated and channel length estimation is unnecessary, which is an advantage over an existing algorithms. In addition, the proposed algorithm is applicable for irrespective of whether the channel length is shorter than, equal to or longer than the CP length. Simulation results verify the effectiveness of the proposed algorithm and shows that it out performs the existing one in all cases

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    A New Multilevel Inverter with Reduced Number of Switches

    Full text link
    In recent day’s Multilevel inverter (MLI) technologies become a incredibly main choice in the area of high power medium voltage energy control. Though multilevel inverter has a number of advantages it has drawbacks in the vein of higher levels because of using more number of semiconductor switches. This may leads to vast size and price of the inverter is very high. So in order to overcome this problem the new multilevel inverter is proposed with reduced number of switches. The proposed method is well suited for a high power application and it built with three Dc sources and six Switches. Multi carrier pwm technique is used for sine wave generation. The results are validated through the harmonic spectrum of the FFT window by using Matlab/simulink. The result of the proposed MLI is compared with the conventional MLI and other seven level existing topologies

    Impact of High Energy Radiation Effects on N-Channel MOSFETs

    Get PDF

    Studies on free volume controlled electrical properties of PVA/NiO and PVA/TiO2 polymer nanocomposites

    No full text
    Microstructural characterization of poly(vinyl alcohol)/nickel oxide (PVA/NiO) and titanium dioxide (PVA/TiO2) polymer nanocomposites has been performed by Positron Lifetime Technique (PLT). The increased positron lifetime parameter viz., o-Ps lifetime (τ3) up to 1.0 wt of NiO and up to 0.4 wt of TiO2 loading suggests the reduction in overall packing density of the polymer network and the formation of interface between PVA polymer matrix and NiO, TiO2 nanoclusters. The decreased o-Ps lifetime (τ3) at the higher concentration of TiO2 loading indicates the improved interfacial interaction between the surface of TiO2 nanoparticles and side chain of PVA polymer matrix. This is evident from Fourier Transform Infrared Spectroscopy (FTIR) studies. Scanning Electron Microscopy (SEM) studies demonstrate the formation of nanoclusters by the agglomeration of nanoparticles at higher wt of nanofiller loading. The increased AC/DC conductivity of PVA/NiO and at lower concentration of TiO2 in PVA/TiO2 polymer nanocomposites suggests the increased mobility of ions and electric charge carriers. The decreased conductivity at higher concentration of TiO2 indicates the reduced conducting pathways for the mobility of ions and electric charge carriers due to the increased ion aggregation. The increased dielectric constant and dielectric loss up to 1.0 wt of NiO and 0.4 wt of TiO2 suggests the increased dipole polarization. The decreased dielectric constant after 0.4 wt of TiO2 is attributed to the reduced dipole polarization by the formation of thin immobile nano-layers and hence the polymeric chain mobility

    Studies on free volume controlled electrical properties of PVA/NiO and PVA/TiO2 polymer nanocomposites

    No full text
    Microstructural characterization of poly(vinyl alcohol)/nickel oxide (PVA/NiO) and titanium dioxide (PVA/TiO2) polymer nanocomposites has been performed by Positron Lifetime Technique (PLT). The increased positron lifetime parameter viz., o-Ps lifetime (τ3) up to 1.0 wt of NiO and up to 0.4 wt of TiO2 loading suggests the reduction in overall packing density of the polymer network and the formation of interface between PVA polymer matrix and NiO, TiO2 nanoclusters. The decreased o-Ps lifetime (τ3) at the higher concentration of TiO2 loading indicates the improved interfacial interaction between the surface of TiO2 nanoparticles and side chain of PVA polymer matrix. This is evident from Fourier Transform Infrared Spectroscopy (FTIR) studies. Scanning Electron Microscopy (SEM) studies demonstrate the formation of nanoclusters by the agglomeration of nanoparticles at higher wt of nanofiller loading. The increased AC/DC conductivity of PVA/NiO and at lower concentration of TiO2 in PVA/TiO2 polymer nanocomposites suggests the increased mobility of ions and electric charge carriers. The decreased conductivity at higher concentration of TiO2 indicates the reduced conducting pathways for the mobility of ions and electric charge carriers due to the increased ion aggregation. The increased dielectric constant and dielectric loss up to 1.0 wt of NiO and 0.4 wt of TiO2 suggests the increased dipole polarization. The decreased dielectric constant after 0.4 wt of TiO2 is attributed to the reduced dipole polarization by the formation of thin immobile nano-layers and hence the polymeric chain mobility
    corecore