Time Domain Signal Detection for MIMO OFDM

Abstract

The MIMO techniques with OFDM is regarded as a promising solution for increasing data rates, for wireless access qualities of future wireless local area networks, fourth generation wireless communication systems, and for high capacity, as well as better performance. Hence as part of continued research, in this paper an attempt is made to carry out modelling, analysis, channel matrix estimation, synchronization and simulation of MIMO-OFDM system. A time domain signal detection algorithm can be based on Second Order Statistics (SOS) proposed for MIMO-OFDM system over frequency selective fading channels. In this algorithm, an equalizer is first inserted to reduce the MIMO channels to ones with channel length shorter than or equal to the Cyclic Prefix (CP) length. A system model in which the ith received OFDM block left shifted by j samples introduced. MIMO OFDM system model which uses the equalizer can be designed using SOS of the received signal vector to cancel the most of the Inter Symbol Interference (ISI). The transmitted signals are then detected from the equalizer output. In the proposed algorithm, only 2P (P transmitted antennas / users in the MIMO-OFDM system) columns of the channel matrix need to be estimated and channel length estimation is unnecessary, which is an advantage over an existing algorithms. In addition, the proposed algorithm is applicable for irrespective of whether the channel length is shorter than, equal to or longer than the CP length. Simulation results verify the effectiveness of the proposed algorithm and shows that it out performs the existing one in all cases

    Similar works