5 research outputs found

    Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots

    Get PDF
    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize of early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed 3 distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal

    Virus-Bacteria Rice Co-Infection in Africa: Field Estimation, Reciprocal Effects, Molecular Mechanisms, and Evolutionary Implications

    No full text
    Simultaneous infection of a single plant by various pathogen species is increasingly recognized as an important modulator of host resistance and a driver of pathogen evolution. Because plants in agro-ecosystems are the target of a multitude of pathogenic microbes, co-infection could be frequent, and consequently important to consider. This is particularly true for rapidly intensifying crops, such as rice in Africa. This study investigated potential interactions between pathogens causing two of the major rice diseases in Africa: the Rice yellow mottle virus (RYMV) and the bacterium Xanthomonas oryzae pathovar oryzicola (Xoc) in order to: 1/ document virus-bacteria co-infection in rice in the field, 2/ explore experimentally their consequences in terms of symptom development and pathogen multiplication, 3/ test the hypothesis of underlying molecular mechanisms of interactions and 4/ explore potential evolutionary consequences. Field surveys in Burkina Faso revealed that a significant proportion of rice fields were simultaneously affected by the two diseases. Co-infection leads to an increase in bacterial specific symptoms, while a decrease in viral load is observed compared to the mono-infected mock. The lack of effect found when using a bacterial mutant for an effector specifically inducing expression of a small RNA regulatory protein, HEN1, as well as a viral genotype-specific effect, both suggest a role for gene silencing mechanisms mediating the within-plant interaction between RYMV and Xoc. Potential implications for pathogen evolution could not be inferred because genotype-specific effects were found only for pathogens originating from different countries, and consequently not meeting in the agrosystem. We argue that pathogen-pathogen-host interactions certainly deserve more attention, both from a theoretical and applied point of view

    Design of a new multiplex PCR assay for rice pathogenic bacteria detection and its application to infer disease incidence and detect co-infection in rice fields in Burkina Faso

    No full text
    International audienceCrop diseases are responsible for considerable yield losses worldwide and particularly in sub-Saharan Africa. To implement efficient disease control measures, detection of the pathogens and understanding pathogen spatio-temporal dynamics is crucial and requires the use of molecular detection tools, especially to distinguish different pathogens causing more or less similar symptoms. We report here the design a new molecular diagnostic tool able to simultaneously detect five bacterial taxa causing important diseases on rice in Africa: (1) Pseudomonas fuscovaginae, (2) Xanthomonas oryzae, (3) Burkholderia glumae and Burkholderia gladioli, (4) Sphingomonas and (5) Pantoea species. This new detection tool consists of a multiplex PCR, which is cost effective and easily applicable. Validation of the method is presented through its application on a global collection of bacterial strains. Moreover, sensitivity assessment for the detection of all five bacteria is reported to be at 0.5 ng DNA by ÎĽl. As a proof of concept, we applied the new molecular detection method to a set of 256 rice leaves collected from 16 fields in two irrigated areas in western Burkina Faso. Our results show high levels of Sphingomonas spp. (up to 100% of tested samples in one field), with significant variation in the incidence between the two sampled sites. Xanthomonas oryzae incidence levels were mostly congruent with bacterial leaf streak (BLS) and bacterial leaf blight (BLB) symptom observations in the field. Low levels of Pantoea spp. were found while none of the 256 analysed samples was positive for Burkholderia or Pseudomonas fuscovaginae. Finally, many samples (up to 37.5% in one studied field) were positive for more than one bacterium (co-infection). Documenting co-infection levels are important because of their drastic consequences on epidemiology, evolution of pathogen populations and yield losses. The newly designed multiplex PCR for multiple bacterial pathogens of rice is a significant improvement for disease monitoring in the field, thus contributing to efficient disease control and food safety

    Virus-Bacteria Rice Co-Infection in Africa: Field Estimation, Reciprocal Effects, Molecular Mechanisms, and Evolutionary Implications

    No full text
    International audienceSimultaneous infection of a single plant by various pathogen species is increasingly recognized as an important modulator of host resistance and a driver of pathogen evolution. Because plants in agro-ecosystems are the target of a multitude of pathogenic microbes, co-infection could be frequent, and consequently important to consider. This is particularly true for rapidly intensifying crops, such as rice in Africa. This study investigated potential interactions between pathogens causing two of the major rice diseases in Africa: the Rice yellow mottle virus (RYMV) and the bacterium Xanthomonas oryzae pathovar oryzicola (Xoc) in order to: 1/ document virus-bacteria co-infection in rice in the field, 2/ explore experimentally their consequences in terms of symptom development and pathogen multiplication, 3/ test the hypothesis of underlying molecular mechanisms of interactions and 4/ explore potential evolutionary consequences. Field surveys in Burkina Faso revealed that a significant proportion of rice fields were simultaneously affected by the two diseases. Co-infection leads to an increase in bacterial specific symptoms, while a decrease in viral load is observed compared to the mono-infected mock. The lack of effect found when using a bacterial mutant for an effector specifically inducing expression of a small RNA regulatory protein, HEN1, as well as a viral genotype-specific effect, both suggest a role for gene silencing mechanisms mediating the within-plant interaction between RYMV and Xoc. Potential implications for pathogen evolution could not be inferred because genotype-specific effects were found only for pathogens originating from different countries, and consequently not meeting in the agrosystem. We argue that pathogen-pathogen-host interactions certainly deserve more attention, both from a theoretical and applied point of view

    Exploring root development and architecture in one of the most heat and drought tolerant cereals, pearl millet

    Get PDF
    International audienceHigher global temperatures due to climate change places our agriculture at risk. Pearl millet is a subsistence cereal crop adapted to heat, drought and poor soils, and has potential to produce high grain and fodder yields at high temperatures where other crops fail. Root architecture contributes to this adaptation and thus provides promising traits that could be targeted by selection, but little is known about the genetic regulation of root traits in pearl millet.To better understand pearl millet root growth pattern in soil and the impact of drought stress, we used the Hounsfield CT Facility (University of Nottingham). This allowed us to non-invasively analyze over time the soil volume explored by the pearl millet root system under different moisture conditions.Using the RootTrace facility (University of Nottingham), we performed high-throughput phenotyping of a set of 108 genetically diverse pearl millet inbred lines, monitoring their early seminal root growth. These phenotypic data will be combined with genotyping-by-sequencing (GBS) data in order to identify genomic regions controlling this trait via genome-wide association studies (GWAS)
    corecore