1,333 research outputs found

    The (r,q) policy for the lost-sales inventory system when more than one order may be outstanding

    Get PDF
    We study the continuous-review (r; q) system in which un_lled demands are treated as lost sales. The reorder point r is allowed to be equal to or larger than the order quantity q. Hence, we do not restrict our attention to the well-known case with at most one replenishment order outstanding, but our modeling streamlines exact analysis of that case. The cost structure is standard. We assume that demand is Poisson, that lead times are Erlangian and that orders do not cross in time (lead times are sequential). We determine the equilibrium distribution of the inventory on hand at the delivery instants from the solution (obtained by the Gauss-Seidel method) of the equilibrium equations of a Markov chain. To optimize r and q we develop an adapted version of the algorithm suggested by Federgruen and Zheng for the backorders model (BO). The results obtained in our numerical study show that the suggested procedure dominates standard textbook approximations. In particular, the reductions in the average cost of a simple Economic Order Quantity policy are in the range of 3-14%. Except when lead times are long and variable or when the unit cost of shortage is low, the optimal BO policy provides a fair approximation to the average cost of the best policy.inventory/production; operating characteristics; policies; probability; Markov processes; Area of review; Manufacturing; Service; Supply Chain Operations

    Numeriske løsninger pü geotekniske problemer

    Get PDF

    An in situ instrument for planar O2 optode measurements at benthic interfaces

    No full text
    A new in situ instrument for two‐dimensional mapping of oxygen in coastal sediments is presented. The measuring principle is described, and potential mechanical disturbances, solute and particle smearing associated with the measurements, and calibration routines are evaluated. The first in situ measurements obtained in two different benthic communities are presented. In a shallow photosynthetic sediment (1 m of water depth), an extensive horizontal and temporal variation in the O2 distribution caused by benthic photosynthesis and irrigating fauna was resolved. Repetitive planar optode measurements performed along a transect in central Øresund, Denmark (17 m of water depth) revealed a positive correlation between the apparent O2 penetration depths (OP) measured with a lateral distance <5.0 mm, whereas OP measured with a larger horizontal distance (up to 50 m) were not correlated. Consequently, the OP varied in patches with a characteristic size of 5.0 mm. The instrument described is a powerful new tool for in situ characterization of spatiotemporal variations in O2 distributions within benthic communities. The instrument can be adapted for use at full ocean depths, e.g., on deep‐sea landers or remote operating vehicles

    Conceptual analysis of Kairos for Location-based mobile services

    Get PDF
    Abstract. In order to intervene at the opportune moment, we need to create relevant context-sensing algorithms and inferences for just-in time persuasive messaging. In order to do so, we must first have a thorough understanding of what just-in-time messaging is, and hence kairos. In this paper we will argue that we need to conceptually analyse kairos in a spatio-temporal framework and that we need to reflect on the qualitative aspects of time and place, taking the user’s lifestyle, projects and choices in to consideration together with experiences of place

    Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: an eddy covariance study

    Get PDF
    Coralline algal (maerl) beds are widespread, slow-growing, structurally complex perennial habitats that support high biodiversity, yet are significantly understudied compared to seagrass beds or kelp forests. We present the first eddy covariance (EC) study on a live maerl bed, assessing the community benthic gross primary productivity (GPP), respiration (R), and net ecosystem metabolism (NEM) derived from diel EC time series collected during 5 seasonal measurement campaigns in temperate Loch Sween, Scotland. Measurements were also carried out at an adjacent (~20 m distant) permeable sandy habitat. The O2 exchange rate was highly dynamic, driven by light availability and the ambient tidally-driven flow velocity. Linear relationships between the EC O2 fluxes and available light indicate that the benthic phototrophic communities were lightlimited. Compensation irradiance (Ec) varied seasonally and was typically ~1.8-fold lower at the maerl bed compared to the sand. Substantial GPP was evident at both sites; however, the maerl bed and the sand habitat were net heterotrophic during each sampling campaign. Additional inputs of ~4 and ~7 mol m-2 yr-1 of carbon at the maerl bed and sand site, respectively, were required to sustain the benthic O2 demand. Thus, the 2 benthic habitats efficiently entrap organic carbon and are sinks of organic material in the coastal zone. Parallel deployment of 0.1 m2 benthic chambers during nighttime revealed O2 uptake rates that varied by up to ~8-fold between replicate chambers (from -0.4 to -3.0 mmol O2 m-2 h-1; n = 4). However, despite extensive O2 flux variability on meter horizontal scales, mean rates of O2 uptake as resolved in parallel by chambers and EC were typically within 20% of one another

    Technical note: Estimating light-use efficiency of benthic habitats using underwater O2 eddy covariance

    Get PDF
    Light-use efficiency defines the ability of primary producers to convert sunlight energy to primary production and is computed as the ratio between the gross primary production and the intercepted photosynthetic active radiation. While this measure has been applied broadly within terrestrial ecology to investigate habitat resource-use efficiency, it remains underused within the aquatic realm. This report provides a conceptual framework to compute hourly and daily light-use efficiency using underwater O-2 eddy covariance, a recent technological development that produces habitat-scale rates of primary production under unaltered in situ conditions. The analysis, tested on two benthic flux datasets, documents that hourly light-use efficiency may approach the theoretical limit of 0.125 O-2 per photon under low-light conditions, but it decreases rapidly towards the middle of the day and is typically 10-fold lower on a 24 h basis. Overall, light- use efficiency provides a useful measure of habitat functioning and facilitates site comparison in time and space.Peer reviewe

    The Persuasive Qualities of Maps

    Get PDF
    • …
    corecore