32 research outputs found

    Similarities in social calls during autumn swarming may facilitate interspecific communication between Myotis bat species

    Get PDF
    Bats employ a variety of social calls for communication purposes. However, for most species, social calls are far less studied than echolocation calls and their specific function often remains unclear. We investigated the function of in-flight social calls during autumn swarming in front of a large hibernaculum in Northern Germany, whose main inhabitants are two species of Myotis bats, Natterer’s bats (Myotis nattereri) and Daubenton’s bats (Myotis daubentonii). We recorded social calls in nights of high swarming activity and grouped the calls based on their spectro-temporal structure into ten types and verified our visual classification by a discriminant function analysis. Whenever possible, we subsequently assigned social calls to either M. daubentonii or M. nattereri by analyzing the echolocation calls surrounding them. As many bats echolocate at the same time during swarming, we did not analyze single echolocation calls but the “soundscape” surrounding each social call instead, encompassing not only spectral parameters but also the timbre (vocal “color”) of echolocation calls. Both species employ comparatively similar social call types in a swarming context, even though there are subtle differences in call parameters between species. To additionally gain information about the general function of social calls produced in a swarming context, we performed playback experiments with free-flying bats in the vicinity of the roost, using three different call types from both species, respectively. In three out of six treatments, bat activity (approximated as echolocation call rate) increased during and after stimulus presentation, indicating that bats inspected or approached the playback site. Using a camera trap, we were sometimes able to identify the species of approaching bats. Based on the photos taken during playbacks, we assume one call type to support interspecific communication while another call type works for intraspecific group cohesion

    The soundscape of swarming: Proof of concept for a noninvasive acoustic species identification of swarming Myotis bats

    Get PDF
    Bats emit echolocation calls to orientate in their predominantly dark environment. Recording of species‐specific calls can facilitate species identification, especially when mist netting is not feasible. However, some taxa, such as Myotis bats can be hard to distinguish acoustically. In crowded situations where calls of many individuals overlap, the subtle differences between species are additionally attenuated. Here, we sought to noninvasively study the phenology of Myotis bats during autumn swarming at a prominent hibernaculum. To do so, we recorded sequences of overlapping echolocation calls (N = 564) during nights of high swarming activity and extracted spectral parameters (peak frequency, start frequency, spectral centroid) and linear frequency cepstral coefficients (LFCCs), which additionally encompass the timbre (vocal “color”) of calls. We used this parameter combination in a stepwise discriminant function analysis (DFA) to classify the call sequences to species level. A set of previously identified call sequences of single flying Myotis daubentonii and Myotis nattereri, the most common species at our study site, functioned as a training set for the DFA. 90.2% of the call sequences could be assigned to either M. daubentonii or M. nattereri, indicating the predominantly swarming species at the time of recording. We verified our results by correctly classifying the second set of previously identified call sequences with an accuracy of 100%. In addition, our acoustic species classification corresponds well to the existing knowledge on swarming phenology at the hibernaculum. Moreover, we successfully classified call sequences from a different hibernaculum to species level and verified our classification results by capturing swarming bats while we recorded them. Our findings provide a proof of concept for a new noninvasive acoustic monitoring technique that analyses “swarming soundscapes” by combining classical acoustic parameters and LFCCs, instead of analyzing single calls. Our approach for species identification is especially beneficial in situations with multiple calling individuals, such as autumn swarming

    Henipavirus RNA in African Bats

    Get PDF
    BACKGROUND: Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat. METHODOLOGY/PRINCIPAL FINDINGS: Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected. Virus RNA concentrations in feces were low. CONCLUSIONS/SIGNIFICANCE: The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans

    Evidence for Novel Hepaciviruses in Rodents

    Get PDF
    Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 roden

    Data_Sheet_1_Similarities in social calls during autumn swarming may facilitate interspecific communication between Myotis bat species.pdf

    No full text
    Bats employ a variety of social calls for communication purposes. However, for most species, social calls are far less studied than echolocation calls and their specific function often remains unclear. We investigated the function of in-flight social calls during autumn swarming in front of a large hibernaculum in Northern Germany, whose main inhabitants are two species of Myotis bats, Natterer’s bats (Myotis nattereri) and Daubenton’s bats (Myotis daubentonii). We recorded social calls in nights of high swarming activity and grouped the calls based on their spectro-temporal structure into ten types and verified our visual classification by a discriminant function analysis. Whenever possible, we subsequently assigned social calls to either M. daubentonii or M. nattereri by analyzing the echolocation calls surrounding them. As many bats echolocate at the same time during swarming, we did not analyze single echolocation calls but the “soundscape” surrounding each social call instead, encompassing not only spectral parameters but also the timbre (vocal “color”) of echolocation calls. Both species employ comparatively similar social call types in a swarming context, even though there are subtle differences in call parameters between species. To additionally gain information about the general function of social calls produced in a swarming context, we performed playback experiments with free-flying bats in the vicinity of the roost, using three different call types from both species, respectively. In three out of six treatments, bat activity (approximated as echolocation call rate) increased during and after stimulus presentation, indicating that bats inspected or approached the playback site. Using a camera trap, we were sometimes able to identify the species of approaching bats. Based on the photos taken during playbacks, we assume one call type to support interspecific communication while another call type works for intraspecific group cohesion.</p

    Video_1_Similarities in social calls during autumn swarming may facilitate interspecific communication between Myotis bat species.MP4

    Get PDF
    Bats employ a variety of social calls for communication purposes. However, for most species, social calls are far less studied than echolocation calls and their specific function often remains unclear. We investigated the function of in-flight social calls during autumn swarming in front of a large hibernaculum in Northern Germany, whose main inhabitants are two species of Myotis bats, Natterer’s bats (Myotis nattereri) and Daubenton’s bats (Myotis daubentonii). We recorded social calls in nights of high swarming activity and grouped the calls based on their spectro-temporal structure into ten types and verified our visual classification by a discriminant function analysis. Whenever possible, we subsequently assigned social calls to either M. daubentonii or M. nattereri by analyzing the echolocation calls surrounding them. As many bats echolocate at the same time during swarming, we did not analyze single echolocation calls but the “soundscape” surrounding each social call instead, encompassing not only spectral parameters but also the timbre (vocal “color”) of echolocation calls. Both species employ comparatively similar social call types in a swarming context, even though there are subtle differences in call parameters between species. To additionally gain information about the general function of social calls produced in a swarming context, we performed playback experiments with free-flying bats in the vicinity of the roost, using three different call types from both species, respectively. In three out of six treatments, bat activity (approximated as echolocation call rate) increased during and after stimulus presentation, indicating that bats inspected or approached the playback site. Using a camera trap, we were sometimes able to identify the species of approaching bats. Based on the photos taken during playbacks, we assume one call type to support interspecific communication while another call type works for intraspecific group cohesion.</p

    Amplification of emerging Viruses in a bat colony

    No full text
    Bats host noteworthy viral pathogens, including coronaviruses, astroviruses, and adenoviruses. Knowledge on the ecology of reservoir-borne viruses is critical for preventive approaches against zoonotic epidemics. We studied a maternity colony of Myotis myotis bats in the attic of a private house in a suburban neighborhood in Rhineland-Palatinate, Germany, during 2008, 2009, and 2010. One coronavirus, 6 astroviruses, and 1 novel adenovirus were identified and monitored quantitatively. Strong and specific amplification of RNA viruses, but not of DNA viruses, occurred during colony formation and after parturition. The breeding success of the colony was significantly better in 2010 than in 2008, in spite of stronger amplification of coronaviruses and astroviruses in 2010, suggesting that these viruses had little pathogenic influence on bats. However, the general correlation of virus and bat population dynamics suggests that bats control infections similar to other mammals and that they may well experience epidemics of viruses under certain circumstances
    corecore