1,306 research outputs found

    The role of predictability in cooperative and competitive joint action

    Get PDF

    Assessing evidence for replication:A likelihood-based approach

    Get PDF

    A Volumetric Assessment of Ancient Maya Architecture: A GIS Approach to Settlement Patterns

    Get PDF
    This paper will discuss the general applications of GIS technology to our research in the Yalahau Region of northern Quintana Roo, Mexico. In particular we will address the use of a volumetric analysis as a means of developing an architectural comparative framework at both the intrasite and regional scales. The comparative framework is a powerful tool that allows us to investigate and visualize the distribution of social power both within the site of T\u27isil and across the region. The direct relationship between social power and architectural volume is predicated on the assumption that actors who utilized the largest dwellings were able to coerce (or force) the greatest number of people to aid in their construction

    Sunlight to Convert Carbon Dioxide into Transportation Fuels

    Get PDF
    The proposed plant to convert sunlight and carbon dioxide to transportation fuels will utilize a Counter-Rotating Ring Receiver Reactor Recuperator (CR5) to convert carbon dioxide into carbon monoxide gas and oxygen gas. The CR5 is a solar chemical heat engine that provides an environment for the continuous reduction/oxidation of iron oxide, which allows for the reaction of carbon dioxide to carbon monoxide and oxygen. The plant will contain 150 CR5s each attached to its own parabolic mirror dish in order to collect sunlight. A carbon dioxide feed of approximately 25,070 kg/hr will be used to produce 9,520 kg/hr carbon monoxide. The devices will then feed a mixture of carbon dioxide and carbon monoxide gas to both a water gas shift reactor and a Fischer-Tropsch reactor. The Fischer- Tropsch reactor will use the carbon monoxide along with hydrogen gas produced from the water gas shift reactor to produce a range of hydrocarbon products following an Anderson- Schulz-Flory distribution centered around octane. The FT oil products (naphtha, gasoline, diesel, heavy ends) will be sold while the light-end products will be used to meet the utility requirements of the plant itself. The plant will be located in the western part of Texas in the Mojave Desert in order to take advantage of the high solar flux in this region. Due to the necessity of sunlight to provide energy for the CR5 reaction, the production of carbon monoxide will only take place during daylight hours and 2 hours worth of carbon monoxide production along with an excess of 10% of this amount will be stored in floating roof storage tanks. The storage of some extra carbon monoxide will keep the startup and shutdown production of petrol product constant as the sun rises and sets. The water gas shift reactions and Fischer- Tropsch reactors will operate for as long as carbon monoxide is available and will shut down once the carbon monoxide is depleted. Assuming a discount rate of 13%, the project yields a -$5.5 billion NPV over a 30 year time period. Based on this negative net present value, the plant proves to be economically unattractive. This result is primarily driven by high operating costs due to the high stress put on expensive catalysts that require frequent replacement as well as daily startup/shutdown costs. The largest negative economic factors in the plant projections are related to operating expenses. Specifically, the daily startup and shutdown costs associated with the CR5, WGS and FT reactors are significant. A related factor is the replacement cost of catalysts due to the high amounts of stress associated with daily shutdown, which requires 1 the catalysts to be replaced every 5 years. Storage tanks for continuous operation were considered, which would require 134 storage tanks total. This option is potentially more economically attractive; however, continuous operation was still discounted because the cost of maintenance, piping equipment costs, and other logistical challenges associated with housing the storage tanks. In addition, this option still produces a negative NPV after 30 years. Finally, the compressor operation requires significant electricity, factoring into the economic unattractiveness of the operation of this plant. These variables all lead to a negative net present value and negative cash on hand throughout thirty years of operation. Consequently, unless technological advancements can be made to change the fundamental operations of the sunlight to transportation fuel plant, the investment is not recommended

    Geostatistical analysis of mesoscale spatial variability and error in SeaWiFS and MODIS/Aqua global ocean color data

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 22–39, doi:10.1002/2017JC013023.Mesoscale (10–300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998–2010) and 8 year MODIS/Aqua (2003–2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.NASA's Ocean Biology and Biogeochemistry Grant Numbers: NNG05GG30G, NNG05GR34G, NNX14AM36G, NNX14AL86G, NNX15AE65G; Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Cente

    Practices and perceptions of strength and conditioning in female golf: a survey study of touring professional players

    Get PDF
    The aim of the study was to provide an understanding of current practices and perceptions of strength and conditioning (S&C) training in female touring professionals. A cross-sectional, explorative survey was undertaken and contained 30 questions separated into four sections: i) general participant information, ii) S&C practices, iii) Likert scale questions on S&C for golf performance, and iv) knowledge and awareness of S&C. A total of 102 players completed the survey with a combination of multiple-choice questions (MCQs), open-ended questions, and Likert Scale style questions utilised throughout. Results showed that ≥ 94% of players believed that strength and power in both the lower and upper body, in addition to flexibility, were the most important physical characteristics to complement golf shot metrics (e.g., clubhead speed [CHS], ball speed, carry distance, etc.). However, 26% of players conducted S&C training only in the off-season, with 21% suggesting that they had a fear of injury from S&C training. When considering the barriers to undertaking S&C training, the most common reasons included time constraints (20%) and players wanting to prioritise golf practice (15%). Finally, 58% of players believed that training in the weight room should replicate the golf swing. Although it is positive to see that the main physical characteristics for golf are well-understood by professional players, it is also evident that further education and knowledge translation is required relating to the application of S&C training for performance enhancement and injury risk mitigation purposes

    Assessing the skill of a high-resolution marine biophysical model using geostatistical analysis of mesoscale ocean chlorophyll variability from field observations and remote sensing

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creaive Commons Attribution License. The definitive version was published in Eveleth, R., Glover, D. M., Long, M. C., Lima, I. D., Chase, A. P., & Doney, S. C. . Assessing the skill of a high-resolution marine biophysical model using geostatistical analysis of mesoscale ocean chlorophyll variability from field observations and remote sensing. Frontiers in Marine Science, 8, (2021): 612764, https://doi.org/10.3389/fmars.2021.612764.High-resolution ocean biophysical models are now routinely being conducted at basin and global-scale, opening opportunities to deepen our understanding of the mechanistic coupling of physical and biological processes at the mesoscale. Prior to using these models to test scientific questions, we need to assess their skill. While progress has been made in validating the mean field, little work has been done to evaluate skill of the simulated mesoscale variability. Here we use geostatistical 2-D variograms to quantify the magnitude and spatial scale of chlorophyll a patchiness in a 1/10th-degree eddy-resolving coupled Community Earth System Model simulation. We compare results from satellite remote sensing and ship underway observations in the North Atlantic Ocean, where there is a large seasonal phytoplankton bloom. The coefficients of variation, i.e., the arithmetic standard deviation divided by the mean, from the two observational data sets are approximately invariant across a large range of mean chlorophyll a values from oligotrophic and winter to subpolar bloom conditions. This relationship between the chlorophyll a mesoscale variability and the mean field appears to reflect an emergent property of marine biophysics, and the high-resolution simulation does poorly in capturing this skill metric, with the model underestimating observed variability under low chlorophyll a conditions such as in the subtropics.This work was supported in part by the National Aeronautics and Space Administration (NASA) as part of the North Atlantic Aerosol and Marine Ecosystems Study (NAAMES; NASA grant 80NSSC18K0018). The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the United States Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. This research was enabled by CISL compute and storage resources

    Air-sea gas transfer velocity estimates from the Jason-1 and TOPEX altimeters : prospects for a long-term global time series

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 66 (2007): 173-181, doi:10.1016/j.jmarsys.2006.03.020.Estimation of global and regional air–sea fluxes of climatically important gases is a key goal of current climate research programs. Gas transfer velocities needed to compute these fluxes can be estimated by combining altimeter-derived mean square slope with an empirical relation between transfer velocity and mean square slope derived from field measurements of gas fluxes and small-scale wave spectra [Frew, N.M., Bock, E.J., Schimpf, U., Hara, T., Hauβecker, H., Edson, J.B., McGillis, W.R., Nelson, R.K., McKenna, S.P., Uz, B.M., Jähne, B., 2004. Air–sea gas transfer: Its dependence on wind stress, small-scale roughness and surface films, J. Geophys. Res., 109, C08S17, doi: 10.1029/2003JC002131.]. We previously reported initial results from a dual-frequency (Ku- and C-band) altimeter algorithm [Glover, D.M., Frew, N.M., McCue, S.J., Bock, E.J., 2002. A Multi-year Time Series of Global Gas Transfer Velocity from the TOPEX Dual Frequency, Normalized Radar Backscatter Algorithm, In: Gas Transfer at Water Surfaces, editors: Donelan, M., Drennan, W., Saltzman, E., and Wanninkhof, R., Geophysical Monograph 127, American Geophysical Union, Washington, DC, 325–331.] for estimating the air–sea gas transfer velocity (k) from the mean square slope of short wind waves (40–100 rad/m) and derived a 6-year time series of global transfer velocities based on TOPEX observations. Since the launch of the follow-on altimeter Jason-1 in December 2001 and commencement of the TOPEX/Jason-1 Tandem Mission, we have extended this time series to 12 years, with improvements to the model parameters used in our algorithm and using the latest corrected data releases. The prospect of deriving multi-year and interdecadal time series of gas transfer velocity from TOPEX, Jason-1 and follow-on altimeter missions depends on precise intercalibration of the normalized backscatter. During the Tandem Mission collinear phase, both satellites followed identical orbits with a mere 73-s time separation. The resulting collocated, near-coincident normalized radar backscatter (σ°) data from both altimeters present a unique opportunity to intercalibrate the two instruments, compare derived fields of transfer velocity and estimate the precision of the algorithm. Initial results suggest that the monthly gas transfer velocity fields generated from the two altimeters are very similar. Comparison of along-track Ku-band and C-band σ° during the collinear phase indicates that observed discrepancies are due primarily to small offsets between TOPEX and Jason-1 σ°. The Jason-1 k values have an apparent bias of + 4% relative to TOPEX, while the precision estimated from the two observation sets is 5–7% and scales with k. The resultant long-term, global, mean k is 16 cm/h.We gratefully acknowledge funding support from NASA under grant NAGW–2431 and JPL contract 961425

    Bank Erosion Study

    Get PDF
    The Bank Erosion Study was designed to evaluate eroding fast land bank shorelines as contributors of sand, silt and clay and total nitrogen and total phosphorous introduced into the Chesapeake Bay estuarine system. In addition, the extent and effectiveness of erosion control measures were evaluated for selected shoreline reaches. Fastland banks are the uplands along the shorelines that are composed of semi-consolidated sediments. This study evaluates about 2000 miles of primary tidal shoreline in the Virginia portion of the Chesapeake Bay estuarine system for areas of fast land bank erosion. Primary tidal shorelines are those along the main stem of the Chesapeake Bay and the major tributary estuaries. Approximately 383 miles of shoreline comprising 208 shore reaches are included in. the final analysis. These reaches are responsible for 61% of the annual historic sediment volume loading from tidal shoreline erosion. Sediments for selected representative shore reaches were sampled and analyzed for sand, silt, and clay. Volumetric rates of sediment loading for the study shorelines were determined from historical data. Also, the condition of the shorelines were evaluated by analyzing oblique aerial imagery for 1985 and 1990. From the imagery analysis the extent of defensive shoreline structures (i.e. bulkheads, seawall and revetments) and whether the bank was stable or not was determined. Sediment volume loading was considered to be halted where defensive shoreline structures were installed. There was an increase in shoreline defenses of 18% by 1990. This resulted in an annual reduction of sediment loading by 5%. Total nitrogen and total phosphorous loading from eroding fast land bank sediments have been determined to be significant. This study utilized the results of Ibison et al., 1990 which provided average nutrient loading rates for total nitrogen and total phosphorous from eroded fastland bank sediments. The consequent estimated annual reduction in nutrient loading by defended shorelines for 1990 is about 5% for total nitrogen and total phosphorous. Nineteen reaches have been identified as significant contributors of eroding bank sediments and will require further assessment as to the impacts of nutrient loading
    • …
    corecore