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Abstract Mesoscale (10–300 km, weeks to months) physical variability strongly modulates the structure and
dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon bio-
logical rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within
global 13 year SeaWiFS (1998–2010) and 8 year MODIS/Aqua (2003–2010) chlorophyll a ocean color data
(Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key
geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved vari-
ability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure
of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved vari-
ability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous
analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records
exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered
chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient
as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for vari-
ability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations
between these length scales may reflect scale dependence of biological mechanisms that also create variability
directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling
and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis
for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.

1. Introduction

Before remote sensing satellites provided regular, near-synoptic views of ocean basin scale surface distribu-
tions of phytoplankton, conferences (e.g., Steele, 1978) were being held to discuss and debate the character
of, biophysical mechanisms responsible for, and means of measuring plankton patchiness. This interest was
driven by a desire to predict both the size of these plankton patches and understand their underlying dynam-
ics. This knowledge is sought to improve our ability to use satellite data to guide models (data assimilation) to
assess the impact of marine ecosystems (e.g., fisheries) upon the ocean global role in planetary climate modu-
lation. Initially, much of the characterization and measurement was carried out through 1-D spectral analysis
of chlorophyll a distributions from field measurements along ship-tracks (Platt, 1972), theory (Steele, 1974), or
theory and measurements (Denman & Platt, 1976). With time, the mesoscale variability patterns displayed by
plankton in the surface layer of the ocean (of which patches are just one) came to be associated with the
interaction of turbulent mixing and horizontal gradients of tracer distributions (Abraham, 1998; Bennett &
Denman, 1985; Franks, 2005; Garrett, 1989, 2006; L�evy, 2003; L�evy & Martin, 2013; Mackas et al., 1985; Powell &
Okubo, 1994, to name just a few). A few, more adventurous, researchers attempted to answer some of these
questions with structure function analysis (Denman & Freeland, 1985; Yoder et al., 1987) once satellite images
became digitally available. It has been over 40 years since the early 1970s and characterizing the nature and
causes of patchiness continues to be a challenge (van Gennip et al., 2016). Into this milieu we offer our struc-
ture function analysis of the remotely sensed, mesoscale resolution distributions of surface chlorophyll a
derived from global, multiyear data sets from NASA’s Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and
Moderate resolution Imaging Spectroradiometer onboard the EOS-AM satellite (MODIS/A).
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The idea of using remotely sensed data to illuminate features of scalar variables near the sea surface has been
around for a long time. In the past, spatial scale analysis has been accomplished largely with spectral methods
requiring various data smoothing preprocessing to avoid problems introduced by data losses due to masking
clouds and optically thick aerosols, or sensor performance issues (Denman & Abbott, 1988, 1994; Denman &
Platt, 1976; Gower et al., 1980). Some of these drawbacks can be ameliorated with the use of structure func-
tion analysis (Doney et al., 2003; Denman & Freeland, 1985; Yoder et al., 1987). Denman and Freeland (1985)
present one of the earliest applications of spatial structure functions (variograms) to oceanographic measure-
ments of chlorophyll a taken shipboard during a 3 year period off the west coast of Vancouver Island, Canada.
Their efforts to estimate the correlation functions and unresolved noise levels for the purpose of objective
mapping of four oceanographic variables, including log-transformed phytoplankton chlorophyll a values had
no obscuration by clouds. Yoder et al. (1987) followed with an application of structure function analysis to
Coastal Zone Color Scanner (CZCS) data from the southeast U.S. continental shelf. Their results demonstrate
that satellite data (with cloud induced data dropouts) could be used as input to structure function analysis in
the mesoscale range of oceanographic variability. Doney et al. (2003) present monthly, globally distributed
structure function results of spatial variability for 1 year (1998) of daily, Level-3 (L-3) standard mapped image
(SMI) SeaWiFS data. In this paper, we expand upon their work and present an analysis of both the geographic
patterns of mesoscale spatial variability and their corresponding time series for the 13 year (1998–2010) and
8 year (2003–2010) periods of L-3 SMI (nominal 9 km resolution) data from SeaWiFS and MODIS/A sensors.

In this study, we use structure function analysis, also known as variogram analysis (Clark, 1979; Journel &
Huijbregts, 1978), to explore the spatial distribution of mesoscale variance in ocean color imagery. By ana-
lyzing the distribution of variance spatially we can separate significant resolved mesoscale biological signals
from smaller-scale unresolved geophysical variability and systematic noise. Additionally, structure function
determination is a necessary prerequisite for objectively mapping ocean color imagery (Bretherton et al.,
1976). Previously, spectral methods have been the mathematics of choice to explain patchiness in variability
of phytoplankton chlorophyll a (Bennett & Denman, 1985; Denman et al., 1977; Franks, 2005; Garrett, 1989,
2006; L�evy & Martin, 2013; Mackas et al., 1985; Martin, 2003; Powell & Okubo, 1994) in theoretical studies
and (Denman & Abbott, 1988, 1994; Denman & Platt, 1976; Gower et al., 1980; Platt, 1972; Shi et al., 2015;
Smith et al., 1988; van Gennip et al., 2016) in remotely sensed and shipboard data studies. Many of these
previous studies either averaged several images together or carefully chose only clear images to avoid gaps
in the data too large to ignore. Our choice of structure function analysis (Yaglom, 1957) was guided by our
desire to probe multiple length scales of mesoscale satellite ocean color data comparable to spectral analy-
sis but without the operational problems presented by missing data.

In this paper we present results of our study that are an expanded analysis of the geographic, mesoscale pat-
terns of variability begun in Doney et al. (2003). Estimates of resolved and unresolved variance (uncertainty)
as well as decorrelation scale lengths are found for the global, daily 13 year and 8 year time series of SeaWiFS
and MODIS/A. We also present a mathematical framework to link the decorrelation scales results from the
structure function analysis to mixing scales (Ltracer) that act upon horizontal tracer gradients (Garrett, 1989,
2006) producing patchiness. This paper starts with a mathematical derivation of tracer mixing scales related
to the root mean square chlorophyll anomaly fluctuations and the large-scale chlorophyll mean gradient fol-
lowed by a brief discussion of structure function usage and ocean color data sources and processing. In Sec-
tion 3, we present geographic and temporal ocean color variability at both local and global scales separating
resolved, mesoscale phytoplankton variance from apparent smaller-scale geophysical or systematic noise or
their combination. Similarities and differences between results derived from SeaWiFS and MODIS/A are also
provided. The paper concludes with the global, time varying patterns of decorrelation scales and their rela-
tionship with an eddy scale tracer mixing length demonstrating possible geographic distribution of passive
and nonpassive tracer behavior of phytoplankton in the upper ocean. We then summarize our results and
make a few remarks about the apparent lack of any long-term temporal trend in our results.

2. Data and Methods

2.1. Mathematical Framework
The primary variables analyzed in this investigation are the near-surface chlorophyll a (Chl a) concentration
estimates from the ocean color algorithms OC4 and OC3M applied to data from the SeaWiFS and MODIS/
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Aqua satellite instruments, respectively (O’Reilly et al., 2000). These chlorophyll a estimates are log trans-
formed (Campbell, 1995) to render them into approximately normal distributed data C5log 10ðChlaÞ (see
Appendix A on log-normal variables). For more details about the satellite data handling and processing see
section 2.3.

Our mathematical framework begins with a standard Reynolds decomposition applied to the log trans-
formed, satellite Chl a estimates (refer to any introductory text on turbulence, e.g., Tennekes & Lumley,
1972).

C5C1C0 (1)

where C represents the base-10 log transform of the satellite chlorophyll estimate, C represents the long-
term, large-scale mean of the base-10 log transform of chlorophyll, and C0 represents the base-10 log trans-
form anomalies from the long-term, large-scale mean.

We apply an analysis taken from Klocker and Abernathey (2014) where we introduce the concept of a mean
free path (Lmix), as in thermodynamics, defined as the length over which a parcel of water is moved by eddy
rotation without changing its properties (i.e., without mixing). Following Klocker and Abernathey (2014), we
create a parameter that is a mixing length dependent upon a tracer (Ltracer) and make an empirical function
of the tracer fluctuation anomaly as in:

Ltracer5

ffiffiffiffiffiffiffi
C02

p
@C=@x

(2)

where
ffiffiffiffiffiffiffi
C02

p
is the RMS of the tracer fluctuation (an estimate of anomaly variance) and @C=@x is the large-

scale gradient of the tracer mean. Equation (2) is derived from the simple idea that tracer anomalies arise
from turbulent mixing across a mean gradient (Garrett, 1989) with two assumptions (Klocker & Abernathey,
2014): (1) tracer fluctuations are generated by local stirring of larger-scale tracer gradients (with no advec-
tion of tracer variance from upstream regions) and (2) the gradient of the tracer varies slowly over the dis-
tance Ltracer. As such, equation (2) is a theoretical expression for an eddy scale relevant for mixing this tracer
(in our case, chlorophyll a). A true estimate of tracer fluctuation variance (uncontaminated by processes
unrelated to turbulent mesoscale mixing of the upper ocean) when plotted against the local larger-scale
gradient should yield a linear relationship with a slope of Ltracer if the tracer behaves in a passive fashion.

2.2. Structure Functions
To measure the local spatial variability apparent in ocean color imagery, we use structure function, or vario-
gram, analysis that estimates the change in spatial variance as a function of the vector distance (h) between
data points (Journel & Huijbregts, 1978). Structure function analysis is covered in many places (Cressie,
1993; Glover et al., 2011; Journel & Huijbregts, 1978). Briefly, frequent interruption of satellite image data
(clouds, etc.) requires that semivariances that make up the structure function be computed empirically as in
this one-dimensional example:

c�ðhÞ5 1
2NðhÞ

XNðhÞ
k

C0ðxkÞ2C0ðxk1hÞ½ �2 (3)

where c� is the empirical semivariance, h is the vector of distances between data pairs, NðhÞ is the number
of data pairs at each distance h, C0 as above and xk is a spatial location within the data set.

Variograms are rarely analyzed in their empirical form and are rather reduced to parameters of a model
function obtained from a nonlinear regression of the empirical semivariances. In this work, we use a spheri-
cal model given as:

cðhÞ5
c01ðc12c0Þ

3
2

h
d

2
1
2

h3

d3

� �
for h � d

c1 for h > d;

8><
>: (4)

where c0 represents the unresolved variance (or nugget in geostatistical terms), c1 represents the total vari-
ability (sill), d represents the decorrelation scale length (range), and the difference c12c0 is known as the
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resolved variability (relative sill). This function is a curve that tends to zero as h tends to zero and rises in an
arc fashion to a plateau and then remains constant. The intercept (c0) represents unresolved variance in the
data, variability that cannot be resolved at the spatial resolution of the data. The plateau value (c1) is closely
related to the total data spatial variance and the difference between the two (c12c0) represents the vari-
ance that can be resolved by the data set under analysis. The decorrelation scale length (d) is an estimate of
how far apart any two data points must be to exhibit statistically independent behavior.

2.3. Ocean Color Data
Data from both SeaWiFS and MODIS/Aqua (MODIS/A) satellite instruments provide near-global coverage
every 2 days in 8 or 36 visible and near-infrared spectral bands, respectively (NASA, 2014a, 2014b). Spectral
bands common to both SeaWiFS and MODIS/A are combined into ratios of water leaving radiances to make
an estimate of the upper-water column chlorophyll a concentration following the OC4 or OC3M algorithms,
respectively (O’Reilly et al., 2000). These data are then processed into various levels of resolution and pro-
vided via the NASA Ocean Color web site (http://oceancolor.gsfc.nasa.gov/cms/) by the Ocean Biology Proc-
essing Group (OBPG) at NASA’s Goddard Space Flight Center (GSFC) as either standard mapped image (SMI)
or binned (BIN) data files. Level-3 SMI data are created from L-3 BIN data stored on a nearly equal-area, sinu-
soidal grid. Level-3 BIN data are, in turn, created from lower processing level (Level-2) data aggregated onto
this grid over specified time periods (daily, 8 day weeks, monthly, etc.). The L-3 SMI data are stored on an
equirectangular grid introducing some distortion in the east–west directions toward the pole. The distortion
follows a simple relationship between the pixels and their geographic location and is compensated for dur-
ing our analysis.

There are arguably significant differences between the two sensors SeaWiFS and MODIS/A. SeaWiFS data
quantization is 10 bit versus 12 bit quantization for MODIS/A data. Further SeaWiFS signal-to-noise ratio
(SNR) is on the order of three times lower than MODIS/A. This is of particular importance in the near-
infrared bands that are used for atmospheric correction because greater noise in these bands can lead to
greater noise in Chl a concentrations, particularly in waters with low Chl a concentrations such as oligotro-
phic gyres (Hu et al., 2012), where the water leaving signal at the longest wavelength employed in the Chl a
algorithm (547 and 555 nm, respectively) is minimal. Additionally, SeaWiFS L-3 SMI data products are pro-
duced from the Global Area Coverage (GAC) observational sampling strategy employed by the SeaStar sat-
ellite platform, i.e., nominal 1 km observations are subsampled onboard the satellite as one sample saved
every fourth pixel every forth scan line. Consequently each SeaWiFS 9 km pixel has 1/16 as many samples in
its 9 km bin as does MODIS/A (McClain et al., 2004). Fewer samples translate to larger variance in the mean.
Finally, the subsampling scheme has another effect on SeaWiFS data noise, namely that complete informa-
tion about the light field is not available when SeaWiFS data is postprocessed on the ground. Hence, stray
light identification and correction of SeaWiFS data is incomplete (stray light being defined as light in the
optical system that was not intended in the design) (Hu et al., 2000; Uz & Yoder, 2004). For these reasons,
SeaWiFS data should be expected to have more noise than MODIS/A, and our work helps to quantify its
magnitude.

The preparation of ocean color data for analysis in this paper closely follows the procedures in Doney et al.
(2003). Briefly, daily L-3 SMI SeaWiFS and MODIS/A data are obtained from the OBPG OceanColor web site.
We use reprocessing R2010.0 data for both SeaWiFS and MODIS/A satellite instruments. These roughly 9 km
resolution images of chlorophyll a (Chl a) are first log transformed to render them approximately normally
distributed (Campbell, 1995) following the ‘‘law of proportionate effect’’ (Aitchison & Brown, 1966). The daily
log-transformed images are subsequently spatially low-pass filtered with a 31 day centered averaged (Ham-
ming windowed), spatially moving two-dimensional Gaussian sparse-data, low-pass filter with a half-height
width set to one half the filter width (i.e., 100 km and 200 km respectively). Each daily low-pass filter is then
subtracted from the unfiltered daily image to produce a daily anomaly field (all missing data are set to a
default value). For comparison, Doney et al. (2003) used calendar monthly, block averaged means as the
subtrahend in the formation of the daily anomalies.

2.4. Analysis
The procedures for creating and analyzing the structure functions (variograms) derived from ocean color
data have both similarities to and differences from those applied in Doney et al. (2003). Here, as before, the
global, daily anomaly fields (C0) are divided into nonoverlapping 5

�
35

�
subsets and the empirical
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variograms are computed from those subsets daily. For each 58 cell, the nominal lag distance of 9 km is set
by the resolution of underlying L3 SMI data, corrected for the latitude and direction analyzed. In Doney
et al. (2003), the structure functions were computed from all-possible data pairs in the spatial domain for
the North-South and East-West directions only. However, this approach was found to be computationally
inefficient. In this paper, fully two-dimensional variograms are computed for each 58 daily anomaly field
with a Fast Fourier Transform (FFT)-based variogram algorithm (Marcotte, 1996).

The daily empirical variograms are further processed by compositing them on a calendar monthly basis to
form monthly averaged, data pair weighted, empirical variograms. From these monthly two-dimensional,
empirical variograms the North-South and East-West directional semivariances and number of data pairs
are extracted as a function of the lag distance between data pixels. A one-dimensional, spherical model
structure function, equation (4), is fit to each extracted, monthly empirical variogram with a Levenberg-
Marquardt nonlinear regression routine to yield estimates of the model function parameters and their
uncertainties.

2.5. Chlorophyll Gradient
One property of the Chl a field that was not calculated by Doney et al. (2003) was an estimate of the gradi-
ent field magnitude. We start with an estimate of log 10ðChlaÞ values at 9 km resolution, low-pass filtered,
Hamming windowed, monthly moving mean centered on the 15th of each month. These values (C in equa-
tion (1)) are then averaged into 18 blocks and the Matlab gradient function is applied to these 18 blocks to
compute a discretized form of the N-S and E-W partial derivatives:

rC5
@C
@x

;
@C
@y

� �
: (5)

The resultant log 10ðChla=m3Þdegree21 values are converted to log 10ðChla=m3Þ km21 allowing for the cur-
vature of the Earth. The monthly root mean square (RMS) value of the per km results are then averaged
onto the same 58 grid that the geostatistical properties were calculated in either the North-South or East-
West directions and displayed in our tables and figures. The gradient algorithm uses a straightforward appli-
cation of the discretized form of partial derivatives.

3. Results

There are three geostatistical parameters of primary interest in this study. First, unresolved variance (c0) rep-
resents variability present in ocean color data that cannot be resolved at that data resolution. It can be vari-
ability due to submesoscale geophysical variability, instrument or algorithmic noise, or any combination of
the three. Second, resolved variance (c12c0) represents an estimate of the true mesoscale variability in
terms of the variance of the log-10 transformed data anomalies. An advantage of displaying variability in
terms of c0 and (c12c0) for the log-10 transformed data is that they effectively normalize over the large
seasonal and global range in surface chlorophyll. For some applications, however, we also want measures
of the absolute variability of surface chlorophyll concentration. As described in Appendix A, both resolved
(c12c0) and unresolved (c0) variance can be transformed, using equation (A5), into estimates of the corre-
sponding arithmetic variance (and standard deviation) of the original, untransformed data. When plotted as
the log of arithmetic standard deviation (log 10ðsnÞ) against log of mean Chl a, a variable with a constant
coefficient of variation would plot as a straight line. We use this to bracket the data with parallel contours of
constant relative variability as shown in Figures 2 and 4. Third, decorrelation scale length (d) that represents
a distance beyond which any two data points will no longer exhibit any regional correlation. The magnitude
of this parameter is dependent upon the size of the low-pass filter used to generate the anomalies initially.
This parameter tells us how great a distance the chlorophyll a concentration retains some level of statistical
correlation and, in anisotropic data fields, is also direction dependent.

3.1. Interannual Variability
Figure 1 shows the time series of log 10ðChlaÞ, Ltracer, horizontal gradient magnitude, resolved standard devi-
ation (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

), and unresolved standard deviation (
ffiffiffiffi
c0
p

) for the 58 square with its northwest corner at
458N and 408W along the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES) cruise track (http://
naames.larc.nasa.gov/). This figure displays aspects of the ocean color data record that were not explored in

Journal of Geophysical Research: Oceans 10.1002/2017JC013023

GLOVER ET AL. SEAWIFS AND MODIS MESOSCALE VARIABILITY 26

http://naames.larc.nasa.gov/
http://naames.larc.nasa.gov/


Doney et al. (2003), namely interannual variability, coherent seasonal patterns, and horizontal gradient mag-
nitude. At this site (NAAMES), and in virtually every 5

�
grid cell, a seasonal cycle in all of the above proper-

ties can be clearly seen. In Figure 1a, a maximum surface chlorophyll signal appears in the northern
hemisphere late spring-early summer and a lower, secondary, maximum occurs during the late fall, early
northern winter. The secondary maximum is more pronounced at some locations than others depending
on whether or not the site has nutrient-limited spring bloom characteristics of a mid-latitude site (Behren-
feld et al., 2005; Longhurst, 1995; Siegel et al., 2002).

Although there is agreement between the SeaWiFS and MODIS/A sensor estimates of Chl a from year to
year, there are noticeable differences and similarities in the other properties displayed in Figure 1. The time
series of the tracer-based mixing length Ltracer (calculated using

ffiffiffiffiffiffiffi
C02

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c12c0
p

) has a seasonal cycle simi-
lar to the log 10ðChlaÞ and appears to be in phase with the log-transformed chlorophyll a. The seasonal cycle
of the horizontal gradient has a different magnitude depending whether one considers the north-south or
the east-west direction for both SeaWiFS and MODIS/A (north-south generally being larger than east-west for
both instruments). Further, the gradient seasonal cycle is out of phase with the log 10ðChlaÞ signal, with the
gradient lagging the Chl a peak by a month or two. Estimates of resolved standard deviation (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

) from
SeaWiFS and MODIS/A agree well at this location, with seasonality peaking in agreement with surface chloro-
phyll. This demonstrates the strength of the geostatistical technique in isolating the mesoscale geophysical
signal. The unresolved variability (Figure 1e) estimates from MODIS/A are lower than SeaWiFS estimates fol-
lowing the aforementioned greater expected noise in SeaWiFS data (section 2.3), assuming the geophysical
noise is the same for both instruments. Table 1 shows the time series average summary of the MODIS/A key
variables for select time series sites from the northern and southern hemisphere including Ocean Observatory
Initiative (OOI) sites (http://oceanobservatories.org/).
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Figure 1. Time series from along the NAAMES program cruise track at 458N and 408W showing (a) log-transformed chlorophyll a, (b) the tracer-based mixing
length (Ltracer) defined in equation (2), (c) the horizontal gradient magnitude of Figure 1a, (d) the geostatistical resolved variability of SeaWiFS and MODIS/Aqua
chlorophyll a, and (e) the geostatistical unresolved chlorophyll a variability of the same satellite instruments. Geostatistical parameters (in Figures 1d and 1e)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c12c0
p

and
ffiffiffiffiffiffi
c1
p

are in standard deviation units of the log 10 transformed data.
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3.2. Local Temporal Relationships
The relationships between geostatistical variability as arithmetic standard deviation (sn) for the NAAMES site
and mean chlorophyll a become apparent when the time series in Figure 1 are collapsed into scatter plots
(Figure 2). The monthly climatologies (solid dots) are also shown to emphasize the seasonal behavior of the
relationships versus the additional scatter introduced by interannual variability. Lines of constant coefficient
of variation (CV) are plotted by combining equation (A6) with equation (A5) (making allowance for conver-
sion between base-10 and natural logarithms). The monthly resolved variability data points (open circles)
and seasonal monthly climatologies for both instruments lie in a single group. At Chl a concentrations
below �0:32 mg(Chl)/m3 they group around a line of constant CV, but jump to a line of higher constant CV

Table 1
MODIS/Aqua Time Series Summary for BATS, HOT, North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), and Ocean Observatory Initiative (OOI) Sites

BATS HOT NAAMES
Station
PAPA

Irminger
Sea

Argentine
Basin

Southern
Ocean

(31.78N, 64.28W) (22.88N, 1588W) (458N, 408W) (508N, 1458W) (608N, 398W) (428S, 428W) (558S, 908W)

log10(Chl)a 21.07 21.23 20.66 20.55 20.46 20.39 20.99
n 96 96 96 96 88 96 88
Seasonal amplitude 0.55 0.18 0.52 0.09 0.62 0.37 0.21
Phasing (month) 3 1 5 9 7 2 1

N-S unresolved variabilityb 0.061 0.063 0.051 0.056 0.059 0.062 0.049
n 94 96 93 92 69 95 71
Seasonal amplitude 0.03 0.03 0.06 0.05 0.03 0.04 0.04
Phasing (month) 7 5 4 1 6 11 9

E-W unresolved variabilityb 0.067 0.075 0.049 0.051 0.055 0.058 0.032
n 95 94 94 94 71 92 72
Seasonal amplitude 0.04 0.03 0.05 0.05 0.03 0.05 0.05
Phasing (month) 7 4 5 1 2 12 9

N-S resolved variabilityb 0.16 0.16 0.13 0.12 0.13 0.18 0.09
n 91 94 91 89 69 94 67
Seasonal amplitude 0.12 0.06 0.16 0.10 0.12 0.22 0.10
Phasing (month) 4 7 5 10 8 12 1

E-W resolved variabilityb 0.15 0.16 0.13 0.12 0.14 0.16 0.074
n 93 93 94 92 69 92 69
Seasonal amplitude 0.12 0.06 0.14 0.08 0.08 0.25 0.08
Phasing (month) 4 5 5 10 7 12 1

N-S rangec 82.4 63.3 74.0 66.8 60.8 73.5 55.0
n 93 93 95 91 71 94 70
Seasonal amplitude 33.4 21.8 27.6 39.9 14.5 42.1 46.8
Phasing (month) 9 10 1 2 3 3 9

E-W rangec 81.8 82.4 65.6 58.6 51.4 72.4 52.4
n 93 94 93 94 69 94 72
Seasonal amplitude 98.2 57.1 27.8 25.0 23.1 50.6 30.5
Phasing (month) 9 2 8 1 2 3 11

Ltracer
c 113.0 206.0 110.5 94.6 99.5 136.3 91.1

n 94 95 91 87 71 94 70
Seasonal amplitude 69.3 81.6 59.0 65.5 36.1 109.1 51.3
Phasing (month) 8 6 5 10 9 12 9

Gradient magnituded 0.074 0.038 0.074 0.077 0.082 0.089 0.060
n 96 96 96 95 72 96 73
Seasonal amplitude 0.082 0.014 0.064 0.063 0.054 0.110 0.066
Phasing (month) 4 9 6 1 8 2 1

aIn units of log 10½ChlðmgÞ=m3�.
bUnresolved and resolved variability are in units of coefficient of variation (equation (A6)).
cN-S and E-W ranges and Ltracer are in units of kilometers.
dGradient magnitude is in units of log 10½ChlðmgÞ=m3�=100 km.
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at higher Chl a concentrations. The unresolved variability ranges with a CV from about 3% to 10% (Figure
2a) and the resolved variability with a CV from about 10% to 30% (Figure 2b). There is a divergence in
behavior between SeaWiFS and MODIS/A in Figure 2a, which we will return to in our discussion of global
relationships (section 3.3).

3.3. Global Patterns
In an attempt to deconvolve the underlying causes of the seasonal and interannual variability observed in
Figures 1 and 2, global spatial patterns of geostatistical parameters are examined. Figure 3 displays geo-
graphic patterns, in 5

�
cells, of variance weighted, long-term means of unresolved variability (

ffiffiffiffi
c0
p

), and
resolved variability (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

) of the monthly time series (SeaWiFS 1998–2010 and MODIS/A 2003–2010).
The patterns shown here are very similar to the patterns found in Doney et al. (2003) even though the N-S
and E-W results have been averaged together in Figure 3 for each instrument. Immediately apparent are
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Figure 2. Log-log plots of geostatistical variability as arithmetic standard deviation (Chl(mg)/m3) plotted against loga-
rithm of chlorophyll a (log 10½ChlðmgÞ=m3�) for the 5

�
cell time series along the NAAMES program cruise track (458N and

408W). On these axes, lines of constant coefficient of variation plot as straight lines (black dashed lines) and bracket the
data in terms of relative variability. Open symbols for MODIS/A (red, N 5 92) and SeaWiFS (blue, N 5 145) are monthly val-
ues and solid symbols (N 5 12) are monthly climatologies for same satellites. (a) Unresolved variability as the arithmetic
standard deviation (unressn) defined as the square root of equation (A5) (mg Chl/m3) versus log 10ðChlaÞ. Figure 2b same as
Figure 2a for resolved variability (ressn) versus log 10ðChlaÞ.
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the much lower unresolved variability values for MODIS/A (Figure 3b) versus SeaWiFS (Figure 3a). This differ-
ence is especially noticeable in the oligotrophic gyres where the general background chlorophyll a concen-
trations are low. We interpret this difference as due, in part, to a greater number of bits recorded by the
MODIS/A detector than SeaWiFS (12 versus 10 bit quantization) allowing MODIS/A to distinguish more
effectively between noise and signal at low Chl a concentrations (see section 2.3). Regardless, the pattern of
elevated unresolved variability in the center of the basin scale gyres (areas of low Chl a) is clearly visible for
both instruments in both the unresolved (Figures 3a and 3b) and, to a lesser degree, as a bleed-over into
the resolved variability (Figures 3c and 3d). This pattern implies an inverse relationship between the under-
lying chlorophyll concentrations and the relative level of uncertainty with respect to the unresolved variabil-
ity at low-chlorophyll levels in SeaWiFS.

Perhaps nowhere else are the differences between SeaWiFS and MODIS/A and the attributes of our analysis
better shown than in the comparisons displayed in Figure 4. Similar to Figure 2, dashed lines of constant CV
are drawn on the plot to show relative variation, however, in Figure 4 all of the 58 cell, long-term means are
plotted as points with those poleward of 608 latitude as open circles. We assume there is a true geophysical
variability signal (variance) that is scale dependent spanning from submesoscale through mesoscale. Choos-
ing a sampling resolution of 9 km (SMI grid) partitions that true variability signal into two components,
resolved (>9 km or mesoscale) and unresolved (� 9 km or submesoscale). Figure 4a shows that increase in
the measurement value adds additional noise (more variance) to the unresolved component with a magni-
tude dependent on characteristics of the satellite sensor data product noise. As in Figure 2a, the scatter of
data points for unresolved variability tends to range with a CV from �3% to �10% for both instruments.
However, at low Chl a concentrations (below �0.18 mg Chl/m3) the behavior of the two instruments
diverge. While MODIS/A relative variability of unresolved error stays at or below a CV of �10%, SeaWiFS
unresolved variability rises to a CV of �30%. The relationship between unresolved variability in terms of
arithmetic standard deviation, unressn , and log 10ðChlaÞ (Figure 4a) shows SeaWiFS data have a larger unre-
solved variance at low chlorophyll. Assuming that the true geophysical submesoscale signal is the same for

Figure 3. Global distribution maps of resolved and unresolved variability for both SeaWiFS and MODIS/Aqua. The values displayed here are the average of the north-south
and east-west results (see text for further discussion). (a) The unresolved variability derived from SeaWiFS data (as

ffiffiffiffiffi
c0
p

). (b) The unresolved variability from MODIS/A data
(as

ffiffiffiffiffi
c0
p

). (c) The resolved variability derived from SeaWiFS data (as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

). (d) The resolved variability from MODIS/A data (as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

). Note that the unresolved vari-
ability from MODIS/A data (b) is much lower than SeaWiFS yet the resolved variability is still slightly elevated in the oligotrophic gyres in the same pattern as SeaWiFS (c).
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SeaWiFS and MODIS this implies a larger contribution of instrument-specific noise for the SeaWiFS data
(section 2.3).

Resolved variability in terms of arithmetic standard deviation, ressn , plotted versus log 10ðChlaÞ is shown in
Figure 4b and demonstrates a similarity between SeaWiFS and MODIS/A. Most resolved variability plots
between the 10% and 30% coefficient of variation contours and only a small amount of divergence
between the two instruments at low Chl a is apparent. Figure 4b implies that the geostatistical technique is
isolating a robust measure of biophysical, mesoscale variability that is largely independent of measurement
platform. Nevertheless, SeaWiFS does exhibit larger resolved variability than MODIS in the same low-
chlorophyll regions as unresolved variability (compare Figure 4a with Figure 4b). In an ideal situation, both
instruments should capture the same magnitude of resolved variability reflecting only the true geophysical
mesoscale signal. This would hold if our geostatistical method partitioned all sources of instrument-specific
noise into the unresolved component, but clearly this is not the case. The larger SeaWiFS variances in both
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Figure 4. Log-log plots of geostatistical variability as arithmetic standard deviation plotted against logarithm of chloro-
phyll a (log 10½ChlðmgÞ=m3�) for the annual mean of the global collection of 5

�
cells. As in Figure 2 lines of constant coeffi-

cient of variation plot as straight lines (black dashed lines) and bracket the data in terms of relative variability. All points
poleward of 60

�
are plotted as open circles for SeaWiFS (blue) and MODIS/A (red). (a) Unresolved variability as the arith-

metic standard deviation (unressn) defined as the square root of equation (A5) (mg Chl/m3) versus log 10ðChlaÞ. Figure 4b
same as Figure 4a for resolved variability (ressn) versus log 10ðChlaÞ.
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the resolved and unresolved components suggest that our geostatistical method is not fully partitioning
the larger noise levels in SeaWiFS between the unresolved and resolved components, resulting in an appar-
ent leakage of noise from the unresolved into the resolved component. This could reflect deficiencies in
low-pass filtering, the variogram approach, or that some of the noise in SeaWiFS is spatially correlated
(memory effects of optical sensors, cloud ringing, stray light artifacts, etc.) as previously mentioned in sec-
tion 2.3 and Doney et al. (2003), or any combination of the three. Our results apply to the variance compo-
nents of SeaWiFS and MODIS/A and do not directly address possible biases in the low-frequency time or
space means. Any consideration of the reasonableness of either instruments Chl a measurements, in any
region, is a question best decided by the investigator using the data.

Our analysis yields insight into the underlying mechanism of patchiness creation. Building from the defini-
tion of Ltracer in equation (2), Figure 5a displays the square root of the resolved variability

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

, an

Figure 5. The relationship between chlorophyll anomaly RMS and chlorophyll gradient displayed as the square root of

the resolved variability versus the mean chlorophyll gradient magnitude. Here we estimate
ffiffiffiffiffiffiffi
C02

p
with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

(see sec-

tion 2.2) and @C=@x by equation (5). (a) The same global set of data points as in Figure 4 with two sets of linear lines, lines
of constant Ltracer (black dashed lines) and the linear regression of SeaWiFS (blue) and MODIS/A (red) data. All points
poleward of 608 have open symbols. (b) The same plot as in Figure 5a, but restricted to the NAAMES data displayed in
Figure 2, open symbols are monthly and filled symbols monthly seasonal climatologies.
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estimate for
ffiffiffiffiffiffiffi
C02

p
, for both instruments as a function of the local horizontal gradient magnitude. Figure 5a

has lines of constant, operationally defined empirical mixing scale, Ltracer (equation (2)) plotted as dashed
lines. Inspection reveals that the data poleward of 608 (open circles) plot between 10 and 50 km, while the
solid points (660

�
) plot between 50 and 300 km, reflecting a connection of surface chlorophyll mesoscale

length scales to the Rossby radius of deformation noted earlier by Doney et al. (2003). Additionally, linear
regressions of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

(in units of log 10ðChlaÞ) as a function of the local horizontal gradient magnitude
(also in units of log 10ðChlaÞ) were done and the r2 and slope are reported. These regressions are both statis-
tically significant at the 95% confidence level (p-value <0.0001). Since the x axis is in units of gradient per
100 km, 100 times the slope yields an estimate of the global, average Ltracer (73 km for SeaWiFS and 65 km
for MODIS/A). The SeaWiFS values of Ltracer are likely larger because of the positive bias, noted above, in
resolved variability in low-chlorophyll subtropical regions that also have relatively low horizontal gradient
magnitude. Returning, briefly, to the NAAMES site, Figure 5b shows the monthly (open circles) and monthly
seasonal climatologies (filled circles) on the same axes as Figure 5a. Note that at 45

�
N the data points all

plot between �50 and �200 km, the linear regressions (also significant) imply mean Ltracer distances of 95
and 102 km for SeaWiFS and MODIS/A, respectively. Both plots demonstrate that the resolved mesoscale
variability can be expressed as a function of the absolute magnitude of the local, horizontal gradient of the
low-pass filtered chlorophyll field consistent with the argument that physical stirring acting on the large-
scale gradient is an important factor supporting observed mesoscale variability.

4. Discussion

4.1. Error
NASA has a primary interest in quantifying the error of the measurements they make from orbit and the dis-
tribution of that error in both space and time. The sources of error in Chl a remote measurements are mani-
fold, but can be grouped into one of two classes. Either the error is due to true random processes, generally
referred to as noise, or to processes that scale with the size of the variable (Aitchison & Brown, 1966; Camp-
bell, 1995). Mathematically, the actual measurement can be expressed as a sum:

nobs5ntrue1gn1� (6)

where nobs are the actual observations (before the low-pass filter has been subtracted) and ntrue are the true
values. Here g represents errors that are proportional to the size of the mean (n), in this case a spatial mean,
and � represents a constant background noise; both are random and independent. Then we can write for
the unresolved variability component (other components are similar) the arithmetic variance as:

s2
n5s2

gn
2
1s2

� (7)

For coefficient of variation defined as CV5sn=n , then

CV5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
g1

s2
�

n
2

s
(8)

Figure 4 demonstrates different aspects of this relationship for large and small Chl a concentrations. We
see, in Figure 4a and equation (8), as n becomes large (log 10ðChlÞ > 20:8), both MODIS unresolved error
and SeaWiFS unresolved error scale approximately linearly with Chl a, i.e., CV approaches a constant (sg).
This implies that unresolved error can be roughly modeled as the first RHS term of equation (7), sgn. At low
Chl a, this is not true for SeaWiFS where coefficient of variation increases substantially as Chl a decreases,
implying that an additional constant error term (s�) is also present, i.e., as n becomes small, CV increases
with the background noise s�=n (equation (8)).

4.2. Length Scales
There are two key length scales in this work, the operationally defined, tracer-based mixing scale (Ltracer)
and the geostatistically derived decorrelation scale length (d). Both Ltracer and d lengths are data
derived, in fact from different aspects of the same data set. They are different approaches but are not
fully independent. The tracer-based mixing scale (Ltracer) is computed from estimates of resolved prop-
erty anomalies and large-scale lateral gradient and is meant to represent a distance a mesoscale eddy
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would, or could, stir a water parcel containing, in this case, chlorophyll a anomalies. The decorrelation
scale length (d) represents a data-derived estimate of the actual distance any two regional mean anom-
alies must be separated to ensure that they are statistically independent. The interpretation of

Figure 6. Maps of the length parameters derived from MODIS/A (see text for a discussion of SeaWiFS data). In each image,
the annual mean value for each 58 cell is plotted for the entire time series (2003–2010). (a) The range (d) in km. (b) Ltracer

following equation (2) in km. Here we estimate
ffiffiffiffiffiffiffi
C02

p
with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

(see section 2.2) and @C=@x by equation (5). (c) The
local gradient magnitude of the mean chlorophyll concentration (@C=@x) in units of log 10½ChlðmgÞm23�=100 km.
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differences between Ltracer and d has many potential challenges because of the differential impacts of
physical effects and mesoscale biological variations on the two length scales. After all, Ltracer should, in
theory, represent physical effects while d (range) should also capture mesoscale biological variations. In
principle, it may be possible to separate physical stirring from biological effects, however, this will have
to wait for future improvements in the methodology that are not fully resolved at this time. Even if
Ltracer and d were exactly proportional, there is no reason the ratio should be exactly one (1). For exam-
ple, choice of a different variogram model would result in a different d and hence a different propor-
tionality. Further, this framework does not account for large regional variations in mesoscale eddy
kinetic energy, the effects of which are unknown. Therefore, we caution readers to be careful not to
over-interpret perceived differences between Ltracer and d; the following discussion should be consid-
ered as a scaling argument not an exact relationship.

With these caveats in mind, we can explore effective differences in Ltracer and d in terms of the implied chlo-
rophyll anomalies caused by physical stirring. Scaling arguments suggest that physical stirring with a tracer
length scale (Ltracer) replaced by the observed decorrelation length scale (d) acting on a large-scale gradient
(@C=@x) should generate tracer anomalies with a root mean square (RMS) of:

Figure 7. Ratio (R) of observed resolved variability (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

) to predicted variability ð
ffiffiffiffiffiffiffi
C02

p
Þstir as explained in

the text and equation (10). The white space, centered on zero, encompasses 61 standard deviation of R (SeaWiFS:
60.1662 and MODIS/A: 60:1461). A single contour at the 695% confidence level encloses 5

�
grid cells outside 95% of all

R values. (a) SeaWiFS R values, note the large positive areas that are beyond the 95% confidence limits may be due, in
part, to aliasing of unresolved variability into the resolved variability estimate. (b) MODIS/A R values, note the areas of
negative R in common with SeaWiFS. See text for further discussion.
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ffiffiffiffiffiffiffi
C02

p� �
stir

5d
@C
@x

(9)

where we can consider
ffiffiffiffiffiffiffi
C02

p� �
stir

an estimate of the anomaly variability due to physical stirring. The mag-
nitude of these tracer anomalies can be compared against the observed resolved variability

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

derived from geostatistical methods. The two variability estimates can be combined in a ratio (R):

R5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p� �

obs2
ffiffiffiffiffiffiffi
C02

p� �
stirffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c12c0
p� �

obs1
ffiffiffiffiffiffiffi
C02

p� �
stir

(10)

and are displayed in Figure 7 for both SeaWiFS and MODIS/A. These maps have a color table chosen so that
values within plus or minus one standard deviation of zero are colored white. Further, 5

�
grid cells with val-

ues outside the 695% confidence level around zero are enclosed with a black contour line.

The ratio R presents the spatial distribution of two different estimates of physical stirring derived either
from structure function parameters or mean Chl a gradients. In addition to stirring, the resolved variability
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12c0
p

) includes contributions from mesoscale biological sources and sinks, as well as leakage (aliasing)
of unresolved variability into the resolved variability component, and geophysical noise. If the ratio equals
zero, within statistical uncertainties, then it is likely that stirring is a major factor in the observed resolved
variability. Positive values (R	 0) indicate areas, such as in the oligotrophic ocean, where it is possible that
there is aliasing of unresolved variability into the resolved variability estimate (Figures 3c and 3d). It could
be noise; it could also be real mesoscale or submesoscale variability. Positive values are also seen in the
temperate North Atlantic, Southern Ocean, and Equatorial Pacific where there may be real biological factors
enhancing the observed variability. Negative values (R
 0), such as in some of the western boundary cur-
rents (North and South America and Asia), indicate regions where the gradients (Figure 6c) are quite large
leading to large estimates of physical stirring. It may be that the simple scaling arguments do not hold in
these complex coastal regions where transport is tied to topography and is not isotropic because of the
boundary (Gruber et al., 2006, 2011).

To within the uncertainties noted above, the following can be stated about the mixing length scale
observed in our results. Length scales computed from the two different approaches give roughly compara-
ble results with values similar to that expected for mesoscale features (Figures 6a and 6b). Similar to the
findings of Doney et al. (2003) both length scales decrease from the tropics to the poles, comparable to the
Rossby radius of deformation. Regional differences occur (Figure 7) but it is unclear from where these biases
arise; are they due to methodological issues or real geophysical signals?

5. Summary

Application of geostatistical analysis techniques allows the variability observed in ocean color imagery to
be partitioned into resolved and unresolved variability and gives an estimate of how variable pixels are
from each other as a function of the distance between them. This variability can be expressed in terms of a
coefficient of variation that allows relative magnitudes of variability to be assessed. Also, the scale of decor-
relation clearly relates to the underlying mean chlorophyll a gradient and can be expressed in terms of an
idealized mesoscale tracer mixing length.

Patchiness is, by its very nature, a spatial phenomenon. Our estimates of resolved and unresolved variabil-
ity as well as decorrelation scale lengths are spatial estimates resolved into monthly time series of individ-
ual 58 grid cells (or more precisely the ocean beneath that cell) of geostatistical parameters. In this paper,
we have demonstrated that the mesoscale-isolated geostatistical parameters exhibit a temporal (sea-
sonal) behavior and vary geographically. We have found that SeaWiFS and MODIS/A resolve approxi-
mately equal variance. SeaWiFS data have an unresolved variability component that is larger than MODIS/
A at low Chl a concentrations, most likely due to sensor noise characteristics. SeaWiFS and MODIS/A have
resolved variability in the range of 10–30% globally, when expressed as coefficient of variation. Globally
SeaWiFS and MODIS/A imply a Ltracer between 50 and 300 km for sites 660

�
latitude and smaller pole-

ward. When comparing satellite derived ocean color data to model output and in developing data assimi-
lation methods, the scale of the comparison (basin, mesoscale, submesoscale, etc.), both magnitude and
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nature of data source variability (resolved versus unresolved), and the correlation scale lengths should be
carefully considered.

The reprocessing version of the ocean color Chl a data used in this study (R2010.0) is an older version of
the data than is currently available (for both SeaWiFS and MODIS/A). Improvements in the current reproc-
essing (R2014.0) might significantly reduce the difference in unresolved variability between the two sen-
sors, a hypothesis that should be explored in future work using the geostatistical techniques outlined
here.

On a closing note, it is interesting that no time series of any geostatistical or any other of our derived
parameters show any sign of a temporal trend for either instrument. Perhaps this is not surprising
because the detection of any trend in ocean color based data is obscured by the shortness of the time
series and the large natural interannual and decadal variability of the primary variable (Chl a). Both Hen-
son et al. (2010) and Yoder et al. (2010) found that the SeaWiFS time series record (the longest as of 2010)
was insufficient in length to differentiate a global trend from natural variability found in the time series.
And although the MODIS/A time series is, as of this writing, 6 years longer, it is only 1 year longer than
the SeaWiFS time series analyzed for this study. Henson et al. (2010), in particular, estimate a time series
longer than 40 years will be necessary to accomplish this task. For approximately 101 years, the patterns
have been rather stable and apparently unchanging, displayed either as time series or as global maps. If
we were to have similar information from a time series twice as long (Callander & Mitchell, 1996; Clark
et al., 2016; Santer et al., 1995), we might be able to make inferences about how these spatial patterns
change or do not change with time. One thing that we can do is monitor the spatial distribution of chlo-
rophyll in the current ocean into the future and observe any changes that may indicate a response to
changing forcing factors (Boyd et al., 2015).

Appendix

A1. Log-Normal Variables

There are a number of references where one can read about log-normal distributions (Aitchison & Brown,
1966; Baker & Gibson, 1987; Campbell, 1995; Limpert et al., 2001). In this short appendix, we hope to provide
a discussion of log-normally distributed variables from the data analyst point-of-view.

Consider data, n, that you know from analysis or previous work to be log-normally distributed (for example,
chlorophyll a concentrations). It can be transformed into a normal (or near-normal) distributed variable with
C5ln ðnÞ. From here on we will be working in a natural logarithm base system, but the following is true in

any base (to within a base-conversion constant, e.g., for base-10,
2.3026). The arithmetic mean and variance of C are calculated in a
straightforward manner

C5
1
N

X
i

Ci (A1)

r25

X
i
ðCi2CÞ2

N21
(A2)

where C is the arithmetic mean of the log-transformed data (C), r2 is
its variance and N represents the number of data points. From here
the simple inverse transformation:

nG5exp ðCÞ (A3)

yields the geometric mean of n, equal to the median of n, for log-
normally distributed data. We use exp ðaÞ5ea to make clear the base
and the exponent. The arithmetic mean (n) and variance (s2

n) of n are
given by:

n5exp ðC1r2=2Þ (A4)
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Figure A1. Coefficient of variation (unitless) as a function of the arithmetic
standard deviation of the log base-10 transformed data (log 10ðChlðmgÞm23Þ)
as per equations (A5) and (A6), assuming original data n is log-normally
distributed.
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s2
n5exp ð2C1r2Þðexp ðr2Þ21Þ (A5)

and represent the maximum likelihood estimators (MLE) of n and s2
n . Not to put too fine a point on it, nG

< n and the coefficient of variation (CV) for n is given by:

CV5sn=n5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ðr2Þ21

p
(A6)

being equivalent to the standard deviation divided by the mean. The coefficient of variation of a log-
normal variable (equation (A6)) is not dependent upon the mean value of n because it is, by definition,
effectively divided by (normalized) its mean (Glover et al., 2011). Combining equation (A6) with equation
(A5) yields an expression of CV in terms of C and sn. Using this relationship, lines of constant CV are plotted
on Figures 2a and 2b and 4a and 4b. A plot of CV as a function of the standard deviation of the log, base-
10, transformed data (r) is shown in Figure A1.
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