498 research outputs found

    Second Order General Slow-Roll Power Spectrum

    Full text link
    Recent combined results from the Wilkinson Microwave Anisotropy Probe (WMAP) and Sloan Digital Sky Survey (SDSS) provide a remarkable set of data which requires more accurate and general investigation. Here we derive formulae for the power spectrum P(k) of the density perturbations produced during inflation in the general slow-roll approximation with second order corrections. Also, using the result, we derive the power spectrum in the standard slow-roll picture with previously unknown third order corrections.Comment: 11 pages, 1 figure ; A typo in Eq. (38) is fixed ; References expanded and a note adde

    The Power Spectrum for a Multi-Component Inflaton to Second-Order Corrections in the Slow-Roll Expansion

    Full text link
    We derive the power spectrum P(k)\mathcal P(k) of the density perturbations produced during inflation up to second-order corrections in the standard slow-roll approximation for an inflaton with more than one degree of freedom. We also present the spectral index nn up to first-order corrections including previously missing terms, and the running dn/dlnk{dn}/{d\ln k} to leading order.Comment: 11 pages, no figure. KAIST-TH 2002/0

    Holography of Gravitational Action Functionals

    Get PDF
    Einstein-Hilbert (EH) action can be separated into a bulk and a surface term, with a specific ("holographic") relationship between the two, so that either can be used to extract information about the other. The surface term can also be interpreted as the entropy of the horizon in a wide class of spacetimes. Since EH action is likely to just the first term in the derivative expansion of an effective theory, it is interesting to ask whether these features continue to hold for more general gravitational actions. We provide a comprehensive analysis of lagrangians of the form L=Q_a^{bcd}R^a_{bcd}, in which Q_a^{bcd} is a tensor with the symmetries of the curvature tensor, made from metric and curvature tensor and satisfies the condition \nabla_cQ^{abcd}=0, and show that they share these features. The Lanczos-Lovelock lagrangians are a subset of these in which Q^{abcd} is a homogeneous function of the curvature tensor. They are all holographic, in a specific sense of the term, and -- in all these cases -- the surface term can be interpreted as the horizon entropy. The thermodynamics route to gravity, in which the field equations are interpreted as TdS=dE+pdV, seems to have greater degree of validity than the field equations of Einstein gravity itself. The results suggest that the holographic feature of EH action could also serve as a new symmetry principle in constraining the semiclassical corrections to Einstein gravity. The implications are discussed.Comment: revtex 4; 17 pages; no figure

    An Open Inflationary Model for Dimensional Reduction and its Effects on the Observable Parameters of the Universe

    Full text link
    Assuming that higher dimensions existed in the early stages of the universe where the evolution was inflationary, we construct an open, singularity-free, spatially homogeneous and isotropic cosmological model to study the effects of dimensional reduction that may have taken place during the early stages of the universe. We consider dimensional reduction to take place in a stepwise manner and interpret each step as a phase transition. By imposing suitable boundary conditions we trace their effects on the present day parameters of the universe.Comment: 5 pages, accepted for publication in Int. J. of Mod. Phys.

    Time evolution of a non-singular primordial black hole

    Full text link
    There is growing notion that black holes may not contain curvature singularities (and that indeed nature in general may abhor such spacetime defects). This notion could have implications on our understanding of the evolution of primordial black holes (PBHs) and possibly on their contribution to cosmic energy. This paper discusses the evolution of a non-singular black hole (NSBH) based on a recent model [1]. We begin with a study of the thermodynamic process of the black hole in this model, and demonstrate the existence of a maximum horizon temperature T_{max}, corresponding to a unique mass value. At this mass value the specific heat capacity C changes signs to positive and the body begins to lose its black hole characteristics. With no loss of generality, the model is used to discuss the time evolution of a primordial black hole (PBH), through the early radiation era of the universe to present, under the assumption that PBHs are non-singular. In particular, we track the evolution of two benchmark PBHs, namely the one radiating up to the end of the cosmic radiation domination era, and the one stopping to radiate currently, and in each case determine some useful features including the initial mass m_{f} and the corresponding time of formation t_{f}. It is found that along the evolutionary history of the universe the distribution of PBH remnant masses (PBH-RM) PBH-RMs follows a power law. We believe such a result can be a useful step in a study to establish current abundance of PBH-MRs.Comment: To appear in Int. J. Mod. Phys.

    Universes inside a Λ\Lambda black hole

    Full text link
    We address the question of universes inside a Λ\Lambda black hole which is described by a spherically symmetric globally regular solution to the Einstein equations with a variable cosmological term Λμν\Lambda_{\mu\nu}, asymptotically Λgμν\Lambda g_{\mu\nu} as r0r\to 0 with Λ\Lambda of the scale of symmetry restoration. Global structure of spacetime contains an infinite sequence of black and white holes, vacuum regular cores and asymptotically flat universes. Regular core of a Λ\Lambda white hole models the initial stages of the Universe evolution. In this model it starts from a nonsingular nonsimultaneous big bang, which is followed by a Kasner-type anisotropic expansion. Creation of a mass occurs mostly at the anisotropic stage of quick decay of the initial vacuum energy. We estimate also the probability of quantum birth of baby universes inside a Λ\Lambda black hole due to quantum instability of the de Sitter vacuum.Comment: REVTEX, 9 pages, 13 figures. To appear in Physics Letters

    The warm inflationary universe

    Full text link
    In the past decade, the importance of dissipation and fluctuation to inflationary dynamics has been realized and has led to a new picture of inflation called warm inflation. Although these phenomena are common to condensed matter systems, for inflation models their importance has only recently started to be appreciated. The article describes the motivation for these phenomenon during inflation and then examines their origins from first principles quantum field theory treatments of inflation models. Cosmology today is a data intensive field and this is driving theory to greater precision and predictability. This opens the possibility to consider tests for detecting observational signatures of dissipative processes, which will be discussed. In addition it will be discussed how particle physics and cosmology are now working in tandem to push the boundaries of our knowledge about fundamental physics.Comment: 20 pages, 8 figure

    Triple-horizon spherically symmetric spacetime and holographic principle

    Full text link
    We present a family of spherically symmetric spacetimes, specified by the density profile of a vacuum dark energy, which have the same global structure as the de Sitter spacetime but the reduced symmetry which leads to a time-evolving and spatially inhomogeneous cosmological term. It connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. This family contains a special class distinguished by dynamics of evaporation of a cosmological horizon which evolves to the triple horizon with the finite entropy, zero temperature, zero curvature, infinite positive specific heat, and infinite scrambling time. Non-zero value of the cosmological constant in the triple-horizon spacetime is tightly fixed by quantum dynamics of evaporation of the cosmological horizon.Comment: Honorable Mentioned Essay - Gravity Research Foundation 2012; submitted to Int. J. Mod. Phys.
    corecore