543 research outputs found

    Parametrizing modified gravity for cosmological surveys

    Get PDF
    One of the challenges in testing gravity with cosmology is the vast freedom opened when extending General Relativity. For linear perturbations, one solution consists in using the Effective Field Theory of Dark Energy (EFT of DE). Even then, the theory space is described in terms of a handful of free functions of time. This needs to be reduced to a finite number of parameters to be practical for cosmological surveys. We explore in this article how well simple parametrizations, with a small number of parameters, can fit observables computed from complex theories. Imposing the stability of linear perturbations appreciably reduces the theory space we explore. We find that observables are not extremely sensitive to short time-scale variations and that simple, smooth parametrizations are usually sufficient to describe this theory space. Using the Bayesian Information Criterion, we find that using two parameters for each function (an amplitude and a power law index) is preferred over complex models for 86% of our theory space.Comment: 10 pages, 5 figure

    Nomarski imaging interferometry to measure the displacement field of MEMS

    Get PDF
    We propose to use a Nomarski imaging interferometer to measure the out-of-plane displacement field of MEMS. It is shown that the measured optical phase arises both from height and slope gradients. Using four integrating buckets a more efficient approach to unwrap the measured phase is presented, thus making the method well suited for highly curved objects. Slope and height effects are then decoupled by expanding the displacement field on a functions basis, and the inverse transformation is applied to get a displacement field from a measure of the optical phase map change with a mechanical loading. A measurement reproducibility of about 10 pm is achieved, and typical results are shown on a microcantilever under thermal actuation, thereby proving the ability of such a set-up to provide a reliable full-field kinematic measurement without surface modification

    Healthy theories beyond Horndeski

    Get PDF
    We introduce a new class of scalar-tensor theories that extend Horndeski, or "generalized galileon", models. Despite possessing equations of motion of higher order in derivatives, we show that the true propagating degrees of freedom obey well-behaved second-order equations and are thus free from Ostrogradski instabilities, in contrast to the standard lore. Remarkably, the covariant versions of the original galileon Lagrangians-obtained by direct replacement of derivatives with covariant derivatives-belong to this class of theories. These extensions of Horndeski theories exhibit an uncommon, interesting phenomenology: the scalar degree of freedom affects the speed of sound of matter, even when the latter is minimally coupled to gravity.Comment: 5 pages, version accepted in PR

    Resilience of the standard predictions for primordial tensor modes

    Full text link
    We show that the prediction for the primordial tensor power spectrum cannot be modified at leading order in derivatives. Indeed, one can always set to unity the speed of propagation of gravitational waves during inflation by a suitable disformal transformation of the metric, while a conformal one can make the Planck mass time-independent. Therefore, the tensor amplitude unambiguously fixes the energy scale of inflation. Using the Effective Field Theory of Inflation, we check that predictions are independent of the choice of frame, as expected. The first corrections to the standard prediction come from two parity violating operators with three derivatives. Also the correlator is standard and only receives higher derivative corrections. These results hold also in multifield models of inflation and in alternatives to inflation and make the connection between a (quasi) scale-invariant tensor spectrum and inflation completely robust.Comment: 5 pages, reference added, version accepted in PR

    Effective Theory of Dark Energy at Redshift Survey Scales

    Full text link
    We explore the phenomenological consequences of general late-time modifications of gravity in the quasi-static approximation, in the case where cold dark matter is non-minimally coupled to the gravitational sector. Assuming spectroscopic and photometric surveys with configuration parameters similar to those of the Euclid mission, we derive constraints on our effective description from three observables: the galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with Λ\LambdaCDM as fiducial model and a specific choice for the time dependence of our effective functions, we perform a Fisher matrix analysis and find that the unmarginalized 68%68\% CL errors on the parameters describing the modifications of gravity are of order σ102\sigma\sim10^{-2}--10310^{-3}. We also consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of modified gravity and reduces the above statistical errors accordingly. In all cases, we find that the parameters are highly degenerate, which prevents the inversion of the Fisher matrices. Some of these degeneracies can be broken by combining all three observational probes.Comment: 41 pages, 5 figures, 2 tables, improved analysis of ISW-galaxy correlation, matches published version on JCA

    Modified gravity inside astrophysical bodies

    Full text link
    Many theories of modified gravity, including the well studied Horndeski models, are characterized by a screening mechanism that ensures that standard gravity is recovered near astrophysical bodies. In a recently introduced class of gravitational theories that goes beyond Horndeski, it has been found that new derivative interactions lead to a partial breaking of the Vainshtein screening mechanism inside any gravitational source, although not outside. We study the impact of this new type of deviation from standard gravity on the density profile of a spherically symmetric matter distribution, in the nonrelativistic limit. For simplicity, we consider a polytropic equation of state and derive the modifications to the standard Lane-Emden equations. We also show the existence of a universal upper bound on the amplitude of this type of modified gravity, independently of the details of the equation of state.Comment: 11 pages, 6 figure

    Exploring gravitational theories beyond Horndeski

    Get PDF
    We have recently proposed a new class of gravitational scalar-tensor theories free from Ostrogradski instabilities, in arXiv:1404.6495. As they generalize Horndeski theories, or "generalized" galileons, we call them G3^3. These theories possess a simple formulation when the time hypersurfaces are chosen to coincide with the uniform scalar field hypersurfaces. We confirm that they contain only three propagating degrees of freedom by presenting the details of the Hamiltonian formulation. We examine the coupling between these theories and matter. Moreover, we investigate how they transform under a disformal redefinition of the metric. Remarkably, these theories are preserved by disformal transformations that depend on the scalar field gradient, which also allow to map subfamilies of G3^3 into Horndeski theories.Comment: 33 pages, added comments and corrected typos as in JCAP versio
    corecore