10 research outputs found

    HIV-associated structural brain changes as related to cognition

    Full text link
    Nearly half of all HIV-positive individuals present with some form of HIV-associated neurocognitive disorder (HAND). The experiments described in this thesis examined the structural changes that occur in the brain as a result of HIV infection. While previous work has established that HIV targets the basal ganglia and fronto-striatal systems and impacts cortical and white matter pathways, it was unknown whether these changes occur in the absence of HAND. The studies described here focused on cognitively asymptomatic HIV+ individuals (CAHIV+) without HAND as determined by widely accepted neuropsychological performance guidelines. Experiment 1 utilized diffusion tensor imaging (DTI) to examine HIV-associated alterations in white matter (WM) fractional anisotropy (FA) in the absence of HAND in 23 HIV+ individuals and 17 control participants (HIV-) matched for age, education, and verbal IQ. The hypothesis was that CAHIV+ participants would show lower FA values than HIV- in the corpus callosum, frontotemporal, and parietal regions of interest (ROIs). CAHIV+ individuals demonstrated higher FA in the frontotemporal region and posterior corpus callosum, but lower FA in parietal WM relative to HIV- individuals. Experiment 2 utilized structural MRI to compare cortical thickness in 22 CAHIV+ individuals and 19 control participants (HIV-) matched for age, education, and verbal IQ. The hypothesis was that CAHIV+ participants would have thinner frontal, temporal, and parietal regions than HIV- participants. Reduced cortical thickness measures were identified in the cingulate and superior temporal gyri, with increased cortical thickness measures in the inferior occipital gyrus, for HIV+ participants compared to HIV-. Experiment 3 examined the relationship between the structural alterations identified in Experiments 1 and 2, neuropsychological performance on tests sensitive to HAND identification, and immunological characteristics in 30 HIV+ participants and 28 HIV- control participants. As hypothesized, regional FA values, cortical thickness, and viral load were related to neuropsychological composite scores for CAHIV+, but not HIV-. Together, results from these three studies suggest that regional FA and cortical alterations identified in CAHIV+ patients may contribute to the cognitive deficits often seen in later stages of HIV disease

    Spatiotemporal Dynamics of Modality-Specific and Supramodal Word Processing

    Get PDF
    AbstractThe ability of written and spoken words to access the same semantic meaning provides a test case for the multimodal convergence of information from sensory to associative areas. Using anatomically constrained magnetoencephalography (aMEG), the present study investigated the stages of word comprehension in real time in the auditory and visual modalities, as subjects participated in a semantic judgment task. Activity spread from the primary sensory areas along the respective ventral processing streams and converged in anterior temporal and inferior prefrontal regions, primarily on the left at around 400 ms. Comparison of response patterns during repetition priming between the two modalities suggest that they are initiated by modality-specific memory systems, but that they are eventually elaborated mainly in supramodal areas

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Chief Nursing Officer Council Leads Journey to Achieve HIMSS Stage 7 Designation at 4 Acute Care Hospitals: A Case Study

    No full text
    When Rochester Regional Health (RRH) Chief Nursing Officer (CNO) Council was organized in 2014, the members, who represented all acute care hospitals in the RRH system, determined several goals, 1 of which was: “Improve the patient experience in collaboration with other system leaders.” As electronic medical records became a government mandate and technology took hold in health care organizations, nurses immediately realized the benefits to patient care and patient safety by doing away with paper and moving the electronic age of medicine forward. Thus began the RRH CNO Council\u27s journey to achieve HIMSS Analytics Stage 7 designation in the RRH acute care hospitals

    COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19

    No full text
    The COVID-19 pandemic continues to pose a major public health threat, especially in countries with low vaccination rates. To better understand the biological underpinnings of SARS-CoV-2 infection and COVID-19 severity, we formed the COVID-19 Host Genetics Initiative1. Here we present a genome-wide association study meta-analysis of up to 125,584 cases and over 2.5 million control individuals across 60 studies from 25 countries, adding 11 genome-wide significant loci compared with those previously identified2. Genes at new loci, including SFTPD, MUC5B and ACE2, reveal compelling insights regarding disease susceptibility and severity.</p

    A first update on mapping the human genetic architecture of COVID-19

    No full text
    corecore