105 research outputs found
A mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid
Generalizing the mode-coupling theory for ideal liquid-glass transitions,
equations of motion are derived for the correlation functions describing the
glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming
system. The molecule is described in the interaction-site representation and
the equations are solved for a dumbbell molecule consisting of two fused hard
spheres in a hard-sphere system. The results for the molecule's arrested
position in the glass state and the reorientational correlators for
angular-momentum index and near the glass transition are
compared with those obtained previously within a theory based on a
tensor-density description of the molecule in order to demonstrate that the two
approaches yield equivalent results. For strongly hindered reorientational
motion, the dipole-relaxation spectra for the -process can be mapped on
the dielectric-loss spectra of glycerol if a rescaling is performed according
to a suggestion by Dixon et al. [Phys. Rev. Lett. {\bf 65}, 1108 (1990)]. It is
demonstrated that the glassy dynamics is independent of the molecule's inertia
parameters.Comment: 19 pages, 10 figures, Phys. Rev. E, in prin
The Debye-Waller factor of liquid silica: Theory and simulation
We show that the prediction of mode-coupling theory for a model of a
network-forming strong glass-former correctly describes the wave-vector
dependence of the Debye-Waller factor. To obtain a good description it is
important to take into account the triplet correlation function c_3, which we
evaluate from a computer simulation. Our results support the possibility that
this theory is able to accurately describe the non-ergodicity parameters of
simple as well as of network-forming liquids.Comment: 5 pages of Latex, 3 figure
Free-space subcarrier wave quantum communication
We experimentally demonstrate quantum communication in 10 dB loss outdoor atmospheric channel with 5 kbit/s bitrate using subcarrier wave coding method. Free-space link was organized by telescoping system with symmetric fiber-optic collimators
Computer Simulations of Supercooled Liquids and Glasses
After a brief introduction to the dynamics of supercooled liquids, we discuss
some of the advantages and drawbacks of computer simulations of such systems.
Subsequently we present the results of computer simulations in which the
dynamics of a fragile glass former, a binary Lennard-Jones system, is compared
to the one of a strong glass former, SiO_2. This comparison gives evidence that
the reason for the different temperature dependence of these two types of glass
formers lies in the transport mechanism for the particles in the vicinity of
T_c, the critical temperature of mode-coupling theory. Whereas the one of the
fragile glass former is described very well by the ideal version of
mode-coupling theory, the one for the strong glass former is dominated by
activated processes. In the last part of the article we review some simulations
of glass formers in which the dynamics below the glass transition temperature
was investigated. We show that such simulations might help to establish a
connection between systems with self generated disorder (e.g. structural
glasses) and quenched disorder (e.g. spin glasses).Comment: 37 pages of Latex, 11 figures, to appear as a Topical Review article
in J. Phys.: Condens. Matte
Dynamical Heterogeneities Below the Glass Transition
We present molecular dynamics simulations of a binary Lennard-Jones mixture
at temperatures below the kinetic glass transition. The ``mobility'' of a
particle is characterized by the amplitude of its fluctuation around its
average position. The 5% particles with the largest/smallest mean amplitude are
thus defined as the relatively most mobile/immobile particles. We investigate
for these 5% particles their spatial distribution and find them to be
distributed very heterogeneously in that mobile as well as immobile particles
form clusters. The reason for this dynamic heterogeneity is traced back to the
fact that mobile/immobile particles are surrounded by fewer/more neighbors
which form an effectively wider/narrower cage. The dependence of our results on
the length of the simulation run indicates that individual particles have a
characteristic mobility time scale, which can be approximated via the
non-Gaussian parameter.Comment: revtex, 10 pages, 20 postscript figure
Inherent Structure Entropy of Supercooled Liquids
We present a quantitative description of the thermodynamics in a supercooled
binary Lennard Jones liquid via the evaluation of the degeneracy of the
inherent structures, i.e. of the number of potential energy basins in
configuration space. We find that for supercooled states, the contribution of
the inherent structures to the free energy of the liquid almost completely
decouples from the vibrational contribution. An important byproduct of the
presented analysis is the determination of the Kauzmann temperature for the
studied system. The resulting quantitative picture of the thermodynamics of the
inherent structures offers new suggestions for the description of equilibrium
and out-of-equilibrium slow-dynamics in liquids below the Mode-Coupling
temperature.Comment: 11 pages of Latex, 3 figure
Simulation study of Non-ergodicity Transitions: Gelation in Colloidal Systems with Short Range Attractions
Computer simulations were used to study the gel transition occurring in
colloidal systems with short range attractions. A colloid-polymer mixture was
modelled and the results were compared with mode coupling theory expectations
and with the results for other systems (hard spheres and Lennard Jones). The
self-intermediate scattering function and the mean squared displacement were
used as the main dynamical quantities. Two different colloid packing fractions
have been studied. For the lower packing fraction, -scaling holds and
the wave-vector analysis of the correlation function shows that gelation is a
regular non-ergodicity transition within MCT. The leading mechanism for this
novel non-ergodicity transition is identified as bond formation caused by the
short range attraction. The time scale and diffusion coefficient also show
qualitatively the expected behaviour, although different exponents are found
for the power-law divergences of these two quantities. The non-Gaussian
parameter was also studied and very large correction to Gaussian behaviour
found. The system with higher colloid packing fraction shows indications of a
nearby high-order singularity, causing -scaling to fail, but the
general expectations for non-ergodicity transitions still hold.Comment: 13 pages, 15 figure
Multiple glass transitions in star polymer mixtures: Insights from theory and simulations
The glass transition in binary mixtures of star polymers is studied by mode
coupling theory and extensive molecular dynamics computer simulations. In
particular, we have explored vitrification in the parameter space of size
asymmetry and concentration of the small star polymers at
fixed concentration of the large ones. Depending on the choice of parameters,
three different glassy states are identified: a single glass of big polymers at
low and low , a double glass at high and low
, and a novel double glass at high and high which is
characterized by a strong localization of the small particles. At low
and high there is a competition between vitrification and phase
separation. Centered in the -plane, a liquid lake shows up
revealing reentrant glass formation. We compare the behavior of the dynamical
density correlators with the predictions of the theory and find remarkable
agreement between the two.Comment: 15 figures, to be published in Macromolecule
Equilibration times in numerical simulation of structural glasses: Comparing parallel tempering and conventional molecular dynamics
Generation of equilibrium configurations is the major obstacle for numerical
investigation of the slow dynamics in supercooled liquid states. The parallel
tempering (PT) technique, originally proposed for the numerical equilibration
of discrete spin-glass model configurations, has recently been applied in the
study of supercooled structural glasses. We present an investigation of the
ability of parallel tempering to properly sample the liquid configuration space
at different temperatures, by mapping the PT dynamics into the dynamics of the
closest local potential energy minima (inherent structures). Comparing the PT
equilibration process with the standard molecular dynamics equilibration
process we find that the PT does not increase the speed of equilibration of the
(slow) configurational degrees of freedom.Comment: 5 pages, 3 figure
- âŠ