513 research outputs found

    The Impact in Older Women of Ovarian FMR1 Genotypes and Sub-Genotypes on Ovarian Reserve

    Get PDF
    We recently associated ovarian FMR1genotypes and sub-genotypes with distinct ovarian aging patterns. How they impact older females is, however, unknown. We, therefore, investigated 217 consecutive first in vitro fertilization (IVF) cycles in women >40 assessing oocyte yields, stratified for better (anti-Müllerian hormone, AMH >1.05 ng/mL) or poorer (AMH≤1.05 ng/mL) functional reserve (FOR)). Mean age was 42.4±2.0 years, mean AMH 0.76±0.92 ng/mL and mean oocyte yield 5.3±5.4. Overall, and in women with better FOR, FMR1 did not affect oocyte yields. With poorer FOR (AMH≤1.05 ng/mL) women with het-norm/high, however, demonstrated higher oocyte yields (5.0±3.8) than those with het-norm/low sub-genotype 3.1±2.5; P = 0.03), confirmed after log conversion. Known associated with low FOR at young age, het-norm/high, thus, appears to preserve FOR into older age, and both het sub-genotypes appear to expand female reproductive lifespan into opposite directions

    FMR1 Genotype with Autoimmunity-Associated Polycystic Ovary-Like Phenotype and Decreased Pregnancy Chance

    Get PDF
    The FMR1 gene partially appears to control ovarian reserve, with a specific ovarian sub-genotype statistically associated with a polycystic ovary (PCO)- like phenotype. Some forms of PCO have been associated with autoimmunity. We, therefore, investigated in multiple regression analyses associations of ovary-specific FMR1 genotypes with autoimmunity and pregnancy chances (with in vitro fertilization, IVF) in 339 consecutive infertile women (455 IVF cycles), 75 with PCO-like phenotype, adjusted for age, race/ethnicity, medication dosage and number of oocytes retrieved. Patients included 183 (54.0%) with normal (norm) and 156 (46%) with heterozygous (het) FMR1 genotypes; 133 (39.2%) demonstrated laboratory evidence of autoimmunity: 51.1% of het-norm/low, 38.3% of norm and 24.2% het-norm/high genotype and sub-genotypes demonstrated autoimmunity (p = 0.003). Prevalence of autoimmunity increased further in PCO-like phenotype patients with het-norm/low genotype (83.3%), remained unchanged with norm (34.0%) and decreased in het-norm/high women (10.0%; P<0.0001). Pregnancy rates were significantly higher with norm (38.6%) than het-norm/low (22.2%, p = 0.001). FMR1 sub-genotype het-norm/low is strongly associated with autoimmunity and decreased pregnancy chances in IVF, reaffirming the importance of the distal long arm of the X chromosome (FMR1 maps at Xq27.3) for autoimmunity, ovarian function and, likely, pregnancy chance with IVF

    Follicle Stimulating Hormone and Anti-Müllerian Hormone per Oocyte in Predicting in vitro Fertilization Pregnancy in High Responders: A Cohort Study

    Get PDF
    Background: Follicle stimulating hormone (FSH) and Anti-Müllerian hormone (AMH) are utilized to differentiate between good and poor response to controlled ovarian hyperstimulation. Their respective roles in defining functional ovarian reserve remain, however, to be elucidated. To better understand those we investigated AMH and FSH per oocyte retrieved (AMHo and FSHo). Methodology/Principal Findings: Three-hundred and ninety-six women, undergoing first in vitro fertilization cycles, were retrospectively evaluated. Women with oocyte yields.75 th percentile for their age group were identified as high responders. In a series of logistic regression analyses, AMHo and FSHo levels were then evaluated as predictive factors for pregnancy potential in high responders. Patients presented with a mean age of 38.065.0 years, mean baseline FSH of 11.868.7 mIU/mL and mean AMH of 1.662.1 ng/mL. Those 88 women, who qualified as high responders, showed mean FSH of 9.766.5 mIU/mL, AMH of 3.163.1 ng/mL and oocyte yields of 15.867.1. Baseline FSH and AMH did not predict pregnancy in high responders. However, a statistically significant association between FSHo and pregnancy was observed in high responders, both after univariate regression (p = 0.02) and when adjusted for age, percentage of usable embryos, and number of embryos transferred (p = 0.03). Rate of useable embryos also significantly affected pregnancy outcome independently of FSHo (p = 0.01). AMHo was also associated with clinical pregnancy chances in high responders (p = 0.03

    Computer-Generated Ovaries to Assist Follicle Counting Experiments

    Get PDF
    Precise estimation of the number of follicles in ovaries is of key importance in the field of reproductive biology, both from a developmental point of view, where follicle numbers are determined at specific time points, as well as from a therapeutic perspective, determining the adverse effects of environmental toxins and cancer chemotherapeutics on the reproductive system. The two main factors affecting follicle number estimates are the sampling method and the variation in follicle numbers within animals of the same strain, due to biological variability. This study aims at assessing the effect of these two factors, when estimating ovarian follicle numbers of neonatal mice. We developed computer algorithms, which generate models of neonatal mouse ovaries (simulated ovaries), with characteristics derived from experimental measurements already available in the published literature. The simulated ovaries are used to reproduce in-silico counting experiments based on unbiased stereological techniques; the proposed approach provides the necessary number of ovaries and sampling frequency to be used in the experiments given a specific biological variability and a desirable degree of accuracy. The simulated ovary is a novel, versatile tool which can be used in the planning phase of experiments to estimate the expected number of animals and workload, ensuring appropriate statistical power of the resulting measurements. Moreover, the idea of the simulated ovary can be applied to other organs made up of large numbers of individual functional units

    Visual Similarity Perception of Directed Acyclic Graphs: A Study on Influencing Factors

    Full text link
    While visual comparison of directed acyclic graphs (DAGs) is commonly encountered in various disciplines (e.g., finance, biology), knowledge about humans' perception of graph similarity is currently quite limited. By graph similarity perception we mean how humans perceive commonalities and differences in graphs and herewith come to a similarity judgment. As a step toward filling this gap the study reported in this paper strives to identify factors which influence the similarity perception of DAGs. In particular, we conducted a card-sorting study employing a qualitative and quantitative analysis approach to identify 1) groups of DAGs that are perceived as similar by the participants and 2) the reasons behind their choice of groups. Our results suggest that similarity is mainly influenced by the number of levels, the number of nodes on a level, and the overall shape of the graph.Comment: Graph Drawing 2017 - arXiv Version; Keywords: Graphs, Perception, Similarity, Comparison, Visualizatio

    Single-embryo transfer reduces clinical pregnancy rates and live births in fresh IVF and Intracytoplasmic Sperm Injection (ICSI) cycles: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has become an accepted procedure to transfer more than one embryo to the patient to achieve acceptable ongoing pregnancy rates. However, transfers of more than a single embryo increase the probability of establishing a multiple gestation. Single-embryo transfer can minimize twin pregnancies but may also lower live birth rates. This meta-analysis aimed to compare current data on single-embryo versus double-embryo transfer in fresh IVF/ICSI cycles with respect to implantation, ongoing pregnancy and live birth rates.</p> <p>Methods</p> <p>Search strategies included on-line surveys of databases from 1995 to 2008. Data management and analysis were conducted using the Stats Direct statistical software. The fixed-effect model was used for odds ratio (OR). Fixed-effect effectiveness was evaluated by the Mantel Haenszel method. Seven trials fulfilled the inclusion criteria.</p> <p>Results</p> <p>When pooling results under the fixed-effect model, the implantation rate was not significantly different between double-embryo transfer (34.5%) and single-embryo transfer group (34.7%) (<it>P </it>= 0.96; OR = 0.99, 95% CI 0.78, 1.25). On the other hand, double-embryo transfer produced a statistically significantly higher ongoing clinical pregnancy rate (44.5%) than single-embryo transfer (28.3%) (<it>P </it>< 0.0001; OR:2.06, 95% CI = 1.64,2.60). At the same time, pooling results presented a significantly higher live birth rate when double-embryo transfer (42.5%) (P < 0.001; OR: 1.87, 95% CI = 1.44,2.42) was compared with single-embryo transfer (28.4%).</p> <p>Conclusion</p> <p>Meta-analysis with 95% confidence showed that, despite similar implantation rates, fresh double-embryo transfer had a 1.64 to 2.60 times greater ongoing pregnancy rate and 1.44 to 2.42 times greater live birth rate than single-embryo transfer in a population suitable for ART treatment.</p

    Effects of dehydroepiandrosterone on in vivo ovine follicular development

    Get PDF
    STUDY QUESTION: What are the effects of exposure of ovarian tissue to dehydroepiandrosterone (DHEA) supplementation in vivo? SUMMARY ANSWER:DHEA exposure stimulates initiation of primordial follicles and development of gonadotrophin-responsive preantral/early antral follicles possibly mediated through promoting granulosa cell proliferation and enhancing anti-Mullerian hormone (AMH) expression. WHAT IS KNOWN ALREADY? Ovarian ageing is a cause of subfertility and is associated with poor outcomes of IVF treatment and premature menopause. A few clinical studies have shown that DHEA can improve ovarian response and increase the chances of pregnancy after IVF treatment in women with a diminished ovarian reserve (DOR) suggesting DHEA may help to overcome the effect of ovarian ageing. However, there are no data about how DHEA acts on ovarian folliculogenesis. STUDY DESIGN, SIZE AND DURATION: A cortical autograft experimental model was conducted in six female sheep aged at least 24 months. The period of DHEA treatment in the animals lasted for 10 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS: All the animals were subjected to unilateral oophorectomy. Half of the ovary was fixed for histological analysis as a time-zero control. The remaining tissue was used to isolate patches of ovarian cortex which were autografted back onto the ovarian pedicle. The grafting procedure eradicated all growing follicles and synchronized early follicular development. After a 10-week treatment period with DHEA implants, the ewes were sacrificed and the graft and remaining ovary were harvested. Histological and immunohistochemistry (IHC) findings, accompanied with serum hormonal profiles were compared to determine the effect on the follicle population. MAIN RESULTS AND THE ROLE OF CHANCE: Higher proportions of the follicle population in the remaining ovary were observed to be in the antral stage after DHEA treatment. The observation coincided with an increase in the rate of primordial follicle initiation and preantral follicle development in cortical grafts and the remaining ovarian tissue, respectively. The IHC results indicated that DHEA increased the expression of both the proliferation marker (KI-67) in granulosa cells and the follicular AMH expression at the preantral and early antral follicle stages. LIMITATIONS, REASONS FOR CAUTION: The experimental design compared follicle populations before and after DHEA treatment within individual animals to allow changes over time to be detected against a background of high inter-animal variation. However, since no controls without DHEA were included, we cannot say what would have happened over time in its absence, and it is possible that other factors may have resulted in the changes in follicle development observed during the experiment. WIDER IMPLICATIONS OF THE FINDING: Our data supports the idea that DHEA might be a useful therapy to delay the effects of ovarian ageing. Therefore, it may have a role as an adjunct during IVF to improve ovarian response in women with DOR and as a treatment for premature ovarian insufficiency
    corecore