100 research outputs found

    Age of the Peach Springs Tuff, Southeastern California and Western Arizona

    Get PDF
    Sanidine separates from pumice of the early Miocene Peach Springs Tuff are concordantly dated at 18.5 ± 0.2 Ma by two isotopic techniques. The Peach Springs Tuff is the only known unit that can be correlated between isolated outcrops of Miocene strata from the central Mojave Desert of southeastern California to the western Colorado Plateau in Arizona, across five structural provinces, a distance of 350 km. Thus the age of the Peach Springs Tuff is important to structural and paleogeographic reconstructions of a large region. Biotite and sanidine separates from bulk samples of the Peach Springs Tuff from zones of welding and vapor-phase alteration have not produced consistent ages by the K-Ar method. Published ages of mineral separates from 17 localities ranged from 16.2 to 20.5 Ma. Discordant 40Ar/39Ar incremental release spectra were obtained for one biotite and two of the sanidine separates. Ages that correspond to the last gas increments are as old as 27 Ma. The 40Ar/39Ar incremental release determinations on sanidine separated from blocks of Peach Springs Tuff pumice yield ages of 18.3 ± 0.3 and 18.6 ± 0.4 Ma. Laser fusion measurements yield a mean age of 18.51 ± 0.10. The results suggest that sanidine and biotite K-Ar ages older than about 18.5 Ma are due to inherited Ar from pre-Tertiary contaminants, which likely were incorporated into the tuff during deposition. Sanidine K-Ar ages younger than 18 Ma probably indicate incomplete extraction of radiogenic 40Ar, whereas laser fusion dates of biotite and hornblende younger than 18 Ma likely are due to postdepositional alteration. Laser fusion ages as high as 19.01 Ma on biotite grains from pumice suggest that minerals from pre-Tertiary country rocks also were incorporated in the magma chamber

    Large-magnitude miocene extension in the central Mojave Desert: Implications for Paleozoic to Tertiary paleogeography and tectonics

    Get PDF
    The main Cenozoic extensional structure in the central Mojave Desert is the Waterman Hills detachment fault, which places brittely deformed synorogenic Miocene rocks on ductilely and cataclastically deformed footwall rocks. The mylonitic fabric in the lower plate was formed at 23 Ma, based on a zircon U/Pb age from a synmylonitic intrusion. Upper plate strata consist of rhyolite flows overlain by sedimentary rocks that were apparently deposited during extensional faulting. These strata were tilted, folded, and intruded by synkinematic rhyolite plugs that are cut off at the detachment fault. Potassium metasomatism of the rhyolitic rocks is pervasive. Upper plate detrital sediment was derived from the rhyolitic rocks and from metamorphic and plutonic basement rocks not present in the area. The probable source of the exotic basement clasts is the Alvord Mountain area, presently located 35 km east-northeast of the Waterman Hills area. This source was probably much nearer to the Waterman Hills during deposition of the synorogenic deposits and has been subsequently shifted by extensional deformation. Distinctive Mesozoic plutonic rocks provide a possible tie between upper and lower plate rocks. Similar poikilitic gabbro bodies in the Goldstone area and the Iron Mountains suggest slip on the Waterman Hills detachment faultmore » to be about 40-50 km. This is also consistent with other offset markers, such as the western edge of a Mesozoic dike swarm. When 15-20 km( ) of Tertiary extension is restored, Paleozoic eugeoclinal rocks are placed structurally above their miogeoclinal counterparts. Combined with the distribution of Triassic and Jurassic rocks, this implies post-Early Triassic and pre-Late Jurassic stacking of these lithologies.« les

    Age of the Peach Springs Tuff, southeastern California and western Arizona

    Get PDF
    Sanidine separates from pumice of the early Miocene Peach Springs Tuff (PST) are concordantly dated at 18.5 {plus minus} 0.2 Ma by two isotopic techniques. The PST is the only known unit that can be correlated between isolated outcrops of Miocene strata from the central Mojave Desert of southeastern California to the western Colorado Plateau in Arizona, across five structural provinces, a distance of 350 km. Thus the age of the PST is important to structural and paleogeographic reconstructions of a large region. Biotite and sanidine separates from bulk samples of the PST from zones of welding and vapor-phase alteration have not produced consistent ages by the K-Ar method. Published ages of mineral separates from 17 localities ranged from 16.2 to 20.5 Ma. Discordant {sup 40}Ar/{sup 39}Ar incremental release spectra were obtained for one biotite and two of the sanidine separates. Ages that correspond to the last gas increments are old as 27 Ma. The {sup 40}Ar/{sup 39}Ar incremental release determinations on sanidine separated from blocks of PST pumice yield ages of 18.3 {plus minus} 0.3 and 18.6 {plus minus} 0.4 Ma. Laser fusion measurements yield a mean age of 18.51 {plus minus} 0.10. The results suggest that sanidine andmore » biotite K-Ar ages older than about 18.5 Ma are due to inherited Ar from pre-Tertiary contaminants, which likely were incorporated into the tuff during deposition. Sanidine K-Ar ages younger than 18 Ma probably indicate incomplete extraction of radiogenic {sup 40}Ar, whereas laser fusion dates of biotite and hornblende younger than 18 Ma likely are due to postdepositional alteration.« les

    Mineralogy and Genesis of the Windjana Sandstone, Kimberley Area, Gale Crater, Mars

    Get PDF
    MSL Curiosity investigated the Windjana sandstone outcrop, in the Kimberley area of Gale Crater, and obtained mineralogical analyses with the CheMin XRD instrument. Windjana is remarkable in containing an abundance of potassium feldspar (and thus K in its bulk chemistry) combined with a low abundance of plagioclase (and low Na/K in its chemistry). The source of this enrichment in K is not clear, but has significant implications for the geology of Gale Crater and of Mars. The high K could be intrinsic to the sediment and imply that the sediment source area (Gale Crater rim) includes K-rich basalts and possibly more evolved rocks derived from alkaline magmas. Alternatively, the high K could be diagenetic and imply that the Gale Crater sediments were altered by K-rich aqueous fluids after deposition

    Exhumation of the Inyo Mountains, California: Implications for the Timing of Extension along the Western Boundary of the Basin and Range Province and Distribution of Dextral Fault Slip Rates across the Eastern California Shear Zone

    Get PDF
    New geologic mapping, tectonic geomorphologic, 10Be terrestrial cosmogenic nuclide, and (U-Th)/He zircon and apatite thermochronometric data provide the first numerical constraints on late Cretaceous to late Quaternary exhumation of the Inyo Mountains and vertical slip and horizontal extension rates across the eastern Inyo fault zone, California. The east-dipping eastern Inyo fault zone bounds the eastern flank of the Inyo Mountains, a prominent geomorphic feature within the western Basin and Range Province and eastern California shear zone. (U-Th)/He zircon and apatite thermochronometry yield age patterns across the range that are interpreted as indicating: (1) two episodes of moderate to rapid exhumation associated with Laramide deformation during the late Cretaceous/early Tertiary; (2) development of a slowly eroding surface during a prolonged period from early Eocene to middle Miocene; (3) rapid cooling, exhumation, and initiation of normal slip along the eastern Inyo fault zone, accommodated by westward tilting of the Inyo Mountains block, at 15.6 Ma; and (4) rapid cooling, exhumation, and renewed normal slip along the eastern Inyo fault zone at 2.8 Ma. Fault slip continues today as indicated by fault scarps that cut late Pleistocene alluvial fan surfaces. The second episode of normal slip at 2.8 Ma also signals onset of dextral slip along the Hunter Mountain fault, yielding a Pliocene dextral slip rate of 3.3 ± 1.0 mm/a, where a is years. Summing this dextral slip rate with estimated dextral slip rates along the Owens Valley, Death Valley, and Stateline faults yields a net geologic dextral slip rate across the eastern California shear zone of 9.3 + 2.2/–1.4 to 9.8 + 1.4/–1.0 mm/a

    Non-Steroidal Anti-Inflammatory Drugs and Cognitive Function: Are Prostaglandins at the Heart of Cognitive Impairment in Dementia and Delirium ?

    Get PDF
    Studies of non-steroidal anti-inflammatory drugs (NSAIDs) in rheumatoid arthritis imply that inflammation is important in the development of Alzheimer’s disease (AD). However, these drugs have not alleviated the symptoms of AD in those who have already developed dementia. This suggests that the primary mediator targeted by these drugs, PGE2, is not actively suppressing memory function in AD. Amyloid-β oligomers appear to be important for the mild cognitive changes seen in AD transgenic mice, yet amyloid immunotherapy has also proven unsuccessful in clinical trials. Collectively, these findings indicate that NSAIDs may target a prodromal process in mice that has already passed in those diagnosed with AD, and that synaptic and neuronal loss are key determinants of cognitive dysfunction in AD. While the role of inflammation has not yet become clear, inflammatory processes definitely have a negative impact on cognitive function during episodes of delirium during dementia. Delirium is an acute and profound impairment of cognitive function frequently occurring in aged and demented patients exposed to systemic inflammatory insults, which is now recognised to contribute to long-term cognitive decline. Recent work in animal models is beginning to shed light on the interactions between systemic inflammation and CNS pathology in these acute exacerbations of dementia. This review will assess the role of prostaglandin synthesis in the memory impairments observed in dementia and delirium and will examine the relative contribution of amyloid, synaptic and neuronal loss. We will also discuss how understanding the role of inflammatory mediators in delirious episodes will have major implications for ameliorating the rate of decline in the demented population

    A mistletoe tale: postglacial invasion of Psittacanthus schiedeanus (Loranthaceae) to Mesoamerican cloud forests revealed by molecular data and species distribution modeling

    Full text link
    corecore