4 research outputs found

    Hypercholesterolemia is associated with hyperactive cardiac mTORC1 and mTORC2 signaling

    Get PDF
    Nutritional excess and hyperlipidemia increase the heart’s susceptibility to ischemic injury. Mammalian target of rapamycin (mTOR) controls the cellular response to nutritional status and may play a role in ischemic injury. To explore the effect of hypercholesterolemia on cardiac mTOR signaling, we assessed mTOR signaling in hypercholesterolemic swine (HC) that are also susceptible to increased cardiac ischemia-reperfusion injury. Yucatan pigs were fed a high-fat/high-cholesterol diet for 4 weeks to induce hypercholesterolemia, and mTOR signaling was measured by immunoblotting and immunofluorescence in the non-ischemic left ventricular area. Total myocardial mTOR and raptor levels were markedly increased in the HC group compared to the normocholesterolemic group, and directly correlated with serum cholesterol levels. mTOR exhibited intense perinuclear staining in myocytes only in the HC group. Hypercholesterolemia was associated with hyperactive signaling upstream and downstream of both mTOR complexes, including myocardial Akt, S6K1, 4EBP1, S6 and PKC-alpha, increased levels of cardiac hypertrophy markers, and a trend toward lower levels of myocardial autophagy. Hypercholesterolemia can now be added to the growing list of conditions associated with aberrant mTOR signaling. Hypercholesterolemia produces a unique profile of alterations in cardiac mTOR signaling, which is a potential target in cardiac diseases associated with hypercholesterolemia and nutritional excess

    Effect of thrombin fragment (TP508) on myocardial ischemia-reperfusion injury in hypercholesterolemic pigs

    No full text
    Myocardial ischemia-reperfusion (IR) injury occurs frequently in the setting of hypercholesterolemia. We investigated the potential efficacy of a novel thrombin fragment (TP508) on IR injury in a hypercholesterolemic porcine model. Twenty-one hypercholesterolemic male Yucatan pigs underwent 60 min of mid-left anterior descending coronary artery occlusion followed by 120 min of reperfusion. Pigs received either placebo (control, n = 7) or TP508 in two doses (TP508 low dose, n = 7, as bolus of 0.5 mg/kg 50 min into ischemia and an infusion of 1.25 mg·kg−1·h−1 during reperfusion period or TP508 high dose, n = 7, a double dose of TP508 low-dose group). Myocardial function was monitored throughout the experiment. The area at risk and myocardial necrosis were determined by Monastryl blue/triphenyl tetrazolium chloride staining. Apoptosis in the ischemic territory was assessed. Coronary microvascular reactivity to endothelium-dependent and -independent factors was measured. Myocardial necrosis was lower in both TP508-treated groups vs. control (P < 0.05). Regional left ventricular function was improved only in the TP508 high-dose group (P < 0.05). Endothelium-dependent coronary microvascular reactivity was greater in both TP508-treated groups (P < 0.05) vs. control. The expression of proteins favoring cell survival, 90-kDa heat shock protein and phospho-Bad (Ser112) was higher in the TP508 high-dose group (P < 0.05). The expression of the cell death signaling proteins, cleaved caspase-3 (P < 0.05), apoptosis-inducing factor (P < 0.05), and poly-ADP ribose polymerase (P = 0.07) was lower in the TP508 low-dose group vs. TP508 high-dose and control. The terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling positive cell count was lower in both TP508 groups compared with the control (P < 0.05). This study demonstrates that, in hypercholesterolemic pigs, TP508 decreases myocardial necrosis and apoptosis after IR. Thus TP508 may offer a novel approach in protecting the myocardium from IR injury

    1994 Annual Selected Bibliography: Asian American Studies and the Crisis of Practice

    No full text
    corecore