52 research outputs found

    ADAMTS13 regulation of VWF multimer distribution in severe COVID‐19

    Get PDF
    Background Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis. Objectives This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis. Patients and Methods Patients with COVID-19 (n = 23) were recruited from the Beaumont Hospital Intensive Care Unit (ICU) in Dublin. Plasma VWF antigen, multimer distribution, ADAMTS-13 activity, and known inhibitors thereof were assessed. Results We observed markedly increased VWF collagen-binding activity in patients with severe COVID-19 compared to controls (median 509.1 versus 94.3 IU/dl). Conversely, plasma ADAMTS-13 activity was significantly reduced (median 68.2 IU/dl). In keeping with an increase in VWF:ADAMTS-13 ratio, abnormalities in VWF multimer distribution were common in patients with COVID-19, with reductions in high molecular weight VWF multimers. Terminal sialylation regulates VWF susceptibility to proteolysis by ADAMTS-13 and other proteases. We observed that both N- and O-linked sialylation were altered in severe COVID-19. Furthermore, plasma levels of the ADAMTS-13 inhibitors interleukin-6, thrombospondin-1, and platelet factor 4 were significantly elevated. Conclusions These findings support the hypothesis that SARS-CoV-2 is associated with profound quantitative and qualitative increases in plasma VWF levels, and a multifactorial down-regulation in ADAMTS-13 function. Further studies will be required to determine whether therapeutic interventions to correct ADAMTS-13-VWF multimer dysfunction may be useful in COVID-microvascular thrombosis and angiopathy

    Synthesis, self-assembly, and immunological activity of α-galactose-functionalized dendron–lipid amphiphiles

    Get PDF
    Nanoassemblies presenting multivalent displays of biologically active carbohydrates are of significant interest for a wide array of biomedical applications ranging from drug delivery to immunotherapy. In this study, glycodendron–lipid hybrids were developed as a new and tunable class of dendritic amphiphiles. A modular synthesis was used to prepare dendron–lipid hybrids comprising distearylglycerol and 0 through 4th generation polyester dendrons with peripheral protected amines. Following deprotection of the amines, an isothiocyanate derivative of C-linked α-galactose (α-Gal) was conjugated to the dendron peripheries, affording amphiphiles with 1 to 16 α-Gal moieties. Self-assembly in water through a solvent exchange process resulted in vesicles for the 0 through 2nd generation systems and micelles for the 3rd and 4th generation systems. The critical aggregation concentrations decreased with increasing dendron generation, suggesting that the effects of increasing molar mass dominated over the effects of increasing the hydrophilic weight fraction. The binding of the assemblies to Griffonia simplicifolia Lectin I (GSL 1), a protein with specificity for α-Gal was studied by quantifying the binding of fluorescently labeled assemblies to GSL 1-coated beads. It was found that binding was enhanced for amphiphiles containing higher generation dendrons. Despite their substantial structural differences with the natural ligands for the CD1d receptor, the glycodendron–lipid hybrids were capable of stimulating invariant natural killer T (iNKT) cells, a class of innate-like T cells that recognize lipid and glycolipid antigens presented by CD1d and that are implicated in a wide range of diseases and conditions including but not limited to infectious diseases, diabetes and cancer

    Genome and epigenome wide studies of neurological protein biomarkers in the Lothian Birth Cohort 1936

    Get PDF
    Although plasma proteins may serve as markers of neurological disease risk, the molecular mechanisms responsible for inter-individual variation in plasma protein levels are poorly understood. Therefore, we conduct genome- and epigenome-wide association studies on the levels of 92 neurological proteins to identify genetic and epigenetic loci associated with their plasma concentrations (n = 750 healthy older adults). We identify 41 independent genome-wide significant (P

    Synchronization of geometric stochastic resonance by a bi-harmonic drive

    No full text
    When simulating the Langevin dynamics of an elongated particle simultaneously driven by a low- and a high-frequency harmonic drive across a porous membrane, we observed an unusual manifestation of stochastic resonance, with the particle oscillating out of phase with the low-frequency drive. This effect is related to the absolute negative mobility the same particle would exhibit, when setting the low frequency to zero. Here as well the magnitude of the out-of-phase stochastic resonance depends on how the combined action of driving forces and noise fluctuations impacts the particle orientation and, as such, is very sensitive to the particle shape

    Geometric stochastic resonance in a double cavity

    No full text
    Geometric stochastic resonance of particles diffusing across a porous membrane subject to oscillating forces is characterized as a synchronization process. Noninteracting particle currents through a symmetric membrane pore are driven either perpendicular or parallel to the membrane, whereas, harmonic-mixing spectral current components are generated by the combined action of perpendicular and parallel drives. In view of potential applications to the transport of colloids and biological molecules through narrow pores, we also consider the role of particle repulsion as a controlling factor
    • 

    corecore