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ARTICLE

Genome and epigenome wide studies of
neurological protein biomarkers in the Lothian
Birth Cohort 1936
Robert F. Hillary 1, Daniel L. McCartney 1, Sarah E. Harris2,3, Anna J. Stevenson1, Anne Seeboth1,

Qian Zhang4, David C. Liewald 2, Kathryn L. Evans1,2, Craig W. Ritchie5, Elliot M. Tucker-Drob6,7,

Naomi R. Wray 4, Allan F. McRae4, Peter M. Visscher 4, Ian J. Deary2,3 & Riccardo E. Marioni1,2

Although plasma proteins may serve as markers of neurological disease risk, the molecular

mechanisms responsible for inter-individual variation in plasma protein levels are poorly

understood. Therefore, we conduct genome- and epigenome-wide association studies on the

levels of 92 neurological proteins to identify genetic and epigenetic loci associated with their

plasma concentrations (n= 750 healthy older adults). We identify 41 independent genome-

wide significant (P < 5.4 × 10−10) loci for 33 proteins and 26 epigenome-wide significant (P <

3.9 × 10−10) sites associated with the levels of 9 proteins. Using this information, we identify

biological pathways in which putative neurological biomarkers are implicated (neurological,

immunological and extracellular matrix metabolic pathways). We also observe causal rela-

tionships (by Mendelian randomisation analysis) between changes in gene expression

(DRAXIN, MDGA1 and KYNU), or DNA methylation profiles (MATN3, MDGA1 and NEP),

and altered plasma protein levels. Together, this may help inform causal relationships

between biomarkers and neurological diseases.
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P lasma proteins execute diverse biological processes and
aberrant levels of these proteins are implicated in various
disease states. Consequently, plasma proteins may serve as

biomarkers, contributing to individual disease risk prediction and
personalised clinical management strategies1. Identifying circu-
lating biomarkers is of particular importance in neurological
disease states in which access to diseased neural tissue in vivo is
almost impossible. Furthermore, in neurodegenerative disorders,
symptomatology may appear in only advanced clinical states,
necessitating early detection and intervention2. Elucidating the
factors which underpin inter-individual variation in plasma
protein levels can inform disease biology and also identify pro-
teins with likely causal roles in a given disease, augmenting their
value as predictive biomarkers. Indeed, studies have characterised
genetic variants (protein quantitative trait loci; pQTLs) associated
with circulating protein levels and utilised such genetic infor-
mation to identify proteins with causal roles in conditions such as
cardiovascular diseases3–5. However, studies which have aimed to
examine the genetic determinants of neurology-related protein
levels in human plasma are limited6–8. Furthermore, few studies
have combined genetic with epigenetic data to provide an addi-
tional layer of information regarding the molecular mechanisms
responsible for regulating blood protein levels9. Therefore, the
goal of the present study was to characterise genetic and epige-
netic (using DNA methylation) factors associated with putative
neurology-related protein biomarkers in order to identify
potential molecular determinants which regulate their plasma
levels.

Here, genome-wide and epigenome-wide association studies
(GWAS/EWAS) are carried out on the plasma levels of 92 neu-
rological proteins in 750 relatively healthy older adults from the
Lothian Birth Cohort 1936 study (mean age: 73; levels adjusted
for age, sex, population structure and array plate; hereafter simply
referred to as protein levels). These proteins represent the Olink®
neurology panel and encompass a mixture of proteins with
established links to neurobiological processes (such as axon gui-
dance and synaptic function) and neurological diseases (such as
Alzheimer’s disease (AD)), as well as exploratory proteins with
roles in processes including cellular regulation, immunology, and
development. Following the identification of genotype-protein
associations (pQTLs), functional enrichment analyses are per-
formed on independent pQTL variants. Upon identification of
epigenetic factors associated with protein levels, tissue specificity
and pathway enrichment analyses are conducted to reveal pos-
sible biological pathways in which neurological proteins are
implicated. Protein QTL data are integrated with publicly avail-
able expression QTL data to probe the molecular mechanisms
which may modulate circulating protein levels. Finally, GWAS
summary data for proteins and disease states are integrated using
two-sample Mendelian Randomisation (MR) to determine whe-
ther selected proteins are causally associated with neurological
disease states.

Results
Genome wide study of neurological protein biomarkers. For
the GWAS, a Bonferroni P value threshold of 5.4 × 10−10 (gen-
ome-wide significance level: 5.0 × 10−8/92 proteins) was set. The
GWAS analysis in 750 older adults identified 2734 significant
SNPs associated with 37 proteins (Supplementary Data 1). Con-
ditional and joint analysis (GCTA-COJO) resulted in the iden-
tification of 41 conditionally significant pQTLs associated with
the levels of 33 proteins (P < 5.4 × 10−10; Fig. 1a; Supplementary
Data 2). Notably, while genome-wide significant associations
were present for an additional four proteins (Alpha-2-MRAP,
CD38, MRS1 and SMPD1), the conditional P value for these

signals following COJO (n= 1 independent signal per protein)
did not surpass the Bonferroni-corrected threshold of P < 5.4 ×
10−10. Of these 41 variants, 36 (87.8%) were cis pQTLs (SNP
within 10Mb of the transcription start site (TSS) of the gene) and
5 (12.2%) were trans variants. Three of the five trans variants
were located on chromosomes distinct from their respective
Olink® gene. Furthermore, cis only associations were present for
28/33 proteins (84.8%), compared to trans only associations for
3/33 proteins (9.1%). Two proteins (6.1%) were associated with
both cis and trans pQTLs (CD200R and Siglec-9). For all con-
ditionally significant cis pQTLs associated with a given protein,
the pQTL with the lowest P value was denoted as the sentinel
variant (n= 30). The significance of cis associations decreased as
the distance of the sentinel variant from the TSS increased
(Fig. 1b).

The minor allele frequency of independent pQTL variants was
inversely associated with effect size (Fig. 1c). Notably, this
association may be, in part, due to ascertainment bias as rarer
variants (with lower minor allele frequencies) must have large
effect sizes to attain the same level of power as more common
variants. Independent pQTLs explained between 5.1%
(rs12139487; DRAXIN; P= 4.38 × 10−10) and 52.5%
(rs6938061; MDGA1; P= 1.39 × 10−87) of the phenotypic
variance in plasma protein levels (Supplementary Data 2; Fig. 1d).
The majority of pQTL variants were located in intergenic and
intronic regions (Supplementary Data 2; Fig. 1e). The number of
independent loci associated per protein is shown in Fig. 1f. One
trans conditionally significant variant (rs4857414) was shared
between Siglec-9 and CD200R. This variant was annotated to the
ST3GAL6-AS1 gene. Figure 2 demonstrates the effect of genetic
variation at the most significant cis pQTL (rs6938061; MDGA1)
and trans pQTL (rs4857414; Siglec-9) on protein levels.

We also used an alternative method, FUMA (FUnctional
Mapping and Annotation) to find independent pQTLs. This
approach identified 62 significant pQTLs associated with the
levels of 37 proteins (90.3% cis and 9.7% trans effects; Bonferroni-
corrected level of significance: P < 5.4 × 10−10) (Supplementary
Data 3). In contrast to GCTA-COJO, FUMA retains the most
significant pQTL to identify independent signals through linkage
disequilibrium (LD)-based pruning; therefore, variants were
identified for all 37 proteins. Seven independent pQTLs
associated with the levels of 6 proteins were found using both
approaches, whereas the remaining SNPs identified by COJO for
a given protein were located within the same locus as
corresponding SNPs identified by FUMA (overlapping SNPs
highlighted in Supplementary Data 2). In addition, we calculated
a measure of LD (r2) between SNPs which were discordant
between COJO and FUMA. As 7 independent pQTLs were
identified by both methods, this left 34 (41–7) discordant SNPs
from COJO and 55 (62–7) discordant SNPs from FUMA.
Furthermore, as some proteins contained multiple QTLs, this
resulted in 74 SNP-SNP comparisons between COJO and FUMA.
SNPs which exhibited an r2 coefficient > 0.75 were considered to
show evidence of replication (through LD) between both
methods. In total, 27 COJO SNP-FUMA SNP comparisons
exhibited an r2 > 0.75. This consisted of 26 unique SNPs identified
by COJO and encompassed 24 proteins (Supplementary Table 1).

Colocalisation of cis pQTLs with cis eQTLs. Of the 30 sentinel
cis pQTL variants, 12 (40.0%) were cis eQTLs for the same gene in
blood tissue. For 3/12 proteins (DRAXIN, KYNU and MDGA1),
there was strong evidence (posterior probability (PP) > 0.95) for
colocalisation of cis pQTLs and cis eQTLs and for 2 proteins,
LAIR-2 and SIGLEC9, there was weaker evidence (PP > 0.75)
for colocalisation. For 5/13 proteins, there was strong evidence
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Fig. 1 Genome-wide association study of neurological protein biomarkers. a Chromosomal locations of pQTLs. The x-axis represents the chromosomal
location of conditionally significant cis and trans SNPs associated with the levels of Olink® neurology proteins. The y-axis represents the position of the gene
encoding the associated protein. Cis (red circles); trans (blue circles). b Significance of sentinel cis variants versus distance of variants from the gene
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(PP > 0.95) for two distinct causal variants affecting transcript
and protein levels in the locus. For CTSC, there was weaker
evidence (PP > 0.75) for two separate causal signals affecting gene
expression and plasma protein levels within the locus. Finally, for
CLM-6, there was weak evidence (PP > 0.75) for a causal variant
affecting gene expression, but not protein levels, within the locus
(Supplementary Table 2).

For the 3 proteins with strong evidence in favour of a shared
causal variant for gene expression and plasma protein levels, two-
sample MR was performed to test for a causal association between
perturbations in gene expression (using data from eQTLGen
Consortium) and plasma protein levels (using our GWAS data).
Pruned cis protein and expression QTL variants (LD r2 < 0.1)
were used as instrumental variables for the bidirectional MR
analyses. For each trait, the intercept from MR Egger regression
was non-significant, which does not suggest strong evidence for
directional pleiotropy (DRAXIN: P= 0.82; MDGA1: P= 0.38;
KYNU: P= 0.36). For 2 proteins, variation in gene expression
was causally associated with plasma protein levels (Inverse
variance-weighted method; MDGA1: beta= 0.99, se= 0.49, P=
0.02; KYNU: beta= 1.05, se= 0.22, P= 2.2 × 10−6). We did not
observe a causal relationship between gene expression of
DRAXIN and altered plasma protein levels (Inverse variance-
weighted method; beta=−0.98, se= 0.62, P= 0.10); however, we
did observe a causal relationship between DRAXIN plasma
protein levels and changes in gene expression (beta=−0.72, se=
0.07, P= 1.2 × 10−23).

Epigenome wide study of neurological protein biomarkers. For
the EWAS, a Bonferroni P value threshold of 3.9 × 10−10 (gen-
ome-wide significance level: 3.6 × 10−8/92 proteins) was set10 and
analyses were performed using limma, a linear-model-based
method. We identified 26 genome-wide significant CpG sites
associated with the levels of 9 neurological proteins (P < 3.9 ×
10−10). Of these associations, 17 were cis effects (65.4%) and 9
associations were trans effects (35.6%; with 6 trans variants
located on chromosomes distinct from their respective Olink®
gene) (Fig. 3; Supplementary Table 3). As an additional analysis,
we performed a mixed-linear-model approach termed OSCA
(OmicS-data-based Complex trait Analysis)-MOMENT. OSCA
has been recently shown to identify fewer spurious signals than
other methods (including linear regression) (Zhang et al.41). Of
the 9 proteins with genome-wide significant CpG sites identified
using limma (n= 26 CpG sites), 8 proteins were also shown to

have genome-wide significant associations using OSCA (n= 23
CpG sites; 14 cis (60.9%) and 9 trans (39.1%) associations).
Indeed, only CRTAM failed to show a Bonferroni-corrected sig-
nificant association using OSCA when compared to limma.
Furthermore, of the 23 CpG sites identified using OSCA, 19/23
CpGs (82.6%) were also identified by EWAS performed using
limma showing a strong overlap between both methods (Sup-
plementary Table 4).

Three proteins exhibited both genome-wide significant SNP
and CpG site associations: MATN3, MDGA1, and NEP (Fig. 4).
For MATN3, the cis pQTL identified in this study (rs3731663)
has previously been identified as a methylation QTL (mQTL) for
the single cis CpG site associated with MATN3 levels identified by
our EWAS (cg24416238)11. Similarly, the 2 cis pQTLs for
differential blood MDGA1 concentrations in our study have
been significantly associated with methylation levels of cis CpG
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Notably, cis CpG sites (n= 17) identified by our EWAS on protein levels lay
within the same cluster for a given protein. Some of these CpG sites lay too
close to discriminate, resulting in the appearance of 5 cis CpG clusters in
this figure
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sites identified by our EWAS on MDGA1 levels11. Finally, for
NEP, we identified a sole independent trans pQTL (rs4687657)
annotated to the ITIH4 gene (beta: 0.53; effect allele: T), as well as
three trans genome-wide significant CpG sites (cg11645453,
cg18404041 and cg06690548 annotated to ITIH1, ITIH4 and
SLC7A11, respectively). In addition to higher circulating levels of
NEP, this SNP has previously been associated with lower
methylation levels of cg18404041 (ITIH4; beta: −0.93; effect
allele: T; P= 4.20 × 10−17) and higher methylation levels
of cg11645453 (ITIH1; beta: 0.83; effect allele: T; P= 1.28 ×
10−87)12. We performed bidirectional MR analyses to formally
test whether there was a causal relationship between DNA
methylation at these sites and Olink® protein levels (see
methods). For each protein, MR analyses suggested that
differential DNA methylation was causally associated with
changes in protein levels. Conversely, altered protein levels of
MATN3, MDGA1 and NEP were also causally associated with
differential methylation levels at CpG sites identified by our
EWAS (Supplementary Table 5).

We conducted tissue specificity and pathway enrichment
analyses (KEGG and GO—see methods for details) based on
genes identified by methylation for each of the 9 proteins with
genome-wide significant CpG associations. Tissue-specific
patterns of expression were observed for 5/9 proteins
(Supplementary Data 4). Neural tissue was the most common
tissue type in which genes were differentially expressed (n= 4/5
proteins), followed by cardiac and splenic tissue (n= 3/5
proteins). Gene ontology analyses revealed that genes annotated
to CpG sites associated with circulating SIGLEC1 and G-CSF
levels are over-represented in immune system processes, viral
response and cytokine response pathways (Supplementary
Data 5–6; FDR-adjusted P value < 0.05). Furthermore, genes
incorporating CpG sites associated with NEP levels are over-
represented in metabolic pathways involving extracellular
matrix components (Supplementary Data 7; FDR-adjusted P
value < 0.05). For CRTAM, MDGA1, MATN3, NC-Dase,
SMPD1 and TN-R, there were no significant results following
multiple testing correction.

Causal evaluation of biomarkers in neurological disease. From
our GWAS, we identified a conditionally significant cis pQTL for
plasma poliovirus receptor (PVR) levels. Furthermore, variation
in the PVR gene has been implicated in AD13. Therefore, colo-
calisation analysis was performed to test if the same SNP variant
might be driving both associations. A 200 kb region surrounding
the sentinel cis pQTL for PVR was extracted from GWAS sum-
mary statistics for PVR levels, as well as AD14. Default priors were
applied. There was evidence to suggest that there are two distinct
causal variants for altered protein levels and AD risk within the
region (PP > 0.99).

In addition to the colocalisation analysis, two-sample MR was
used to test for putatively causal associations between plasma
PVR levels and AD14. After LD pruning, only one independent
SNP remained (rs7255066). Therefore, causal effect estimates
were determined using the Wald ratio test, i.e., a ratio of effect per
risk allele on AD to effect per risk allele on PVR levels. MR
analyses indicated that PVR levels were causally associated with
AD (beta= 0.17, se= 0.02, P= 5.2 × 10−10; Wald ratio test).
Testing for horizontal pleiotropy was not possible owing to an
insufficient number of instruments. Conversely, AD risk was not
causally associated with PVR levels (number of SNPs: 5; Inverse
variance-weighted method: beta= 0.38, se= 0.29, P= 0.34). The
intercept from MR Egger regression was −0.08 (se: 0.08; P=
0.42), which does not provide strong evidence for directional
pleiotropy.
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Replication of previous pQTL studies. Replication of the pQTL
findings was carried out via lookup of genotype-protein summary
statistics from existing pQTL studies4,5,15,16. Of the 33 proteins
with a conditionally significant pQTL in the present study, 15
(with 18 QTLs) were available for lookup. In total, 6/18 (33.3%)
pQTLs replicated at P < 1.25 × 10-7 (denoting the least con-
servative threshold across all studies) (Supplementary Data 8).
We tested the correlation of beta values for these six significant
pQTLs from our study versus those reported in the literature.
Notably, beta values were only available for 3/6 pQTLs in the
literature. However, for these remaining 3 pQTLs, there was
strong agreement between our observed values and previously
reported beta statistics (rs2075803: 0.50 vs. 0.55; rs481076: 0.44
vs. 0.46 and rs1448903: 0.76 vs. 0.65, respectively). In addition, in
relation to the 15 proteins from the Olink® panel which were
available for look-up, we extracted beta values for all significant
pQTLs associated with the levels of these proteins reported in the
literature. Notably, many of these pQTLs were non-significant in
our study; indeed, in this case, we wished only to determine the
correlation of betas for those pQTLs reported as significant in the
literature with betas from our GWAS. Beta statistics were
reported for 13/15 proteins (totalling 38 pQTLs). There was a
strong correlation between betas for previously reported sig-
nificant pQTLs and pQTLs from our study (r2= 0.89, Supple-
mentary Fig. 1). Finally, of the 23 pQTLs identified by FUMA
which were available for look-up, 9/23 (39.1%) replicated at P <
1.25 × 10−7 (Supplementary Data 9).

Discussion
Using a multi-omics approach, we identified 41 independent
genome-wide significant pQTLs and 26 genome-wide significant
CpG sites associated with circulating neurological protein levels.
To probe the molecular mechanisms which modulate plasma
protein levels, we integrated pQTL and eQTL data allowing for
the examination of whether pQTLs affect gene expression. For
three proteins, we found strong evidence that a common causal
variant underpinned changes in transcript and protein levels.
Mendelian randomisation analyses suggested that variants for two
of these proteins (MDGA1 and KYNU) influence protein levels
by altering gene expression. However, for one protein (DRAXIN),
the converse may be true as our data suggested that altered
plasma protein levels of this neurodevelopmental protein may
affect gene expression, perhaps through a feedback mechanism.
Genotype-protein associations for other proteins may exert their
influence on protein levels through modulation of protein clear-
ance, degradation, binding or secretion. Finally, methylation data
revealed that neurological proteins were also implicated in
immune, developmental and metabolic pathways.

In addition to leveraging methylation data to identify pathway
enrichment for plasma proteins, identification of trans pQTLs
may highlight previously unidentified pathways relevant to dis-
ease processes. For instance, we found that genetic variation at the
inter-alpha-trypsin inhibitor heavy chain family member 4 locus
(ITIH4) is associated with differential NEP levels (trans pQTL:
rs4687657). In addition, two CpG sites annotated to ITIH4 and
ITHI1 (cg18404041 and cg11645453, respectively) were asso-
ciated with NEP levels. Methylation QTL analyses revealed that
the SNP rs4687657 has been previously associated with lower
methylation levels of cg18404041 (ITIH4) and higher DNA
methylation levels of cg11645453 (ITIH1)12. Similarly, this SNP
has been associated with higher gene expression of ITIH417 and
lower protein levels of ITIH14. Together, these data suggest that
the expression of NEP, ITIH4 and ITIH1 may be co-regulated,
involving inverse relationships between NEP and ITIH4 with
ITIH1. Given that mutations in NEP have been linked to

Alzheimer’s pathology and that upregulation of ITIH4 has been
demonstrated in sera of AD patients18, mechanistic studies
relating to co-expression of these proteins are merited in patho-
logical states.

In this study, a single trans variant (rs4857414) was associated
with the circulating levels of two proteins—CD200R1 and Siglec-
9. This polymorphism mapped to the ST3GAL6-AS1 gene.
ST3GAL6-AS1 is a long non-coding RNA which is associated
with increased expression of ST3GAL6, an enzyme responsible
for catalysing the addition of sialic acid to cell surfaces19. Upre-
gulation of ST3GAL6 has been reported in multiple
myeloma20,21; this permits evasion of immune responses against
cancer cells through binding of sialic acid to Siglec receptor
proteins, such as Siglec-9. The recognition of sialic acid by Siglec
proteins ignites signalling cascades which promotes immune
inhibitory responses22,23. Furthermore, CD200-CD200R interac-
tion results in the inhibition of immune responses against mul-
tiple myeloma cells24. Therefore, as polymorphisms in ST3GAL6-
AS1 are associated with altered expression of Siglec-9 and
CD200R, this may provide further evidence for co-regulation of
these proteins in pathological milieux, such as tumorigenesis in
cancers including multiple myeloma. Polymorphisms in such
trans pQTLs may also be used to predict disease risk, progression
and provide pharmacogenomic information in predicting indi-
vidual patient responses to inhibition of these co-regulated
proteins.

By using cis pQTLs as instruments for MR analyses, it is
possible to test whether plasma proteins are causally associated
with disease states25. PVR is a component of the AD risk-
associated APOE/TOMM40 cluster on chromosome 19 and has
been hypothesised to influence risk of AD through susceptibility
to viral infections13. However, it is unknown whether PVR is
causally linked to the disease. MR analyses suggested that circu-
lating PVR levels may be causally associated with AD and not vice
versa. However, an insufficient number of instruments were
available to permit testing for potential pleiotropic effects. Fur-
thermore, colocalisation analysis revealed that independent var-
iants in the PVR locus are likely causally associated with altered
plasma PVR levels and AD risk. While this does not support the
argument for a single causal SNP underlying both altered plasma
PVR levels and AD risk, it may nevertheless suggest that genetic
variation in the PVR locus is causally associated with
development of AD.

The discrepancy in replication of pQTLs reported in previous
studies may be due to a number of factors. First, the sample sizes
of these studies (n < 10015,16; n > 10004,5) are different from that
of the present study (n= 750) leading to differences in statistical
power. Second, diverse proteomic platforms may result in the
detection of different genotype-protein associations. Our study is
the first to characterise the genetic variants associated with the
Olink® neurology panel and thus, the protein list and measure-
ment technology do not overlap with platforms employed in
earlier studies. Depending on platform technology, susceptibility
to cross-reactive events and detection of proteins in their free,
versus complexed, forms can result in inappropriate readouts.
SOMAmer technology, employed in the previous pQTL studies, is
a highly sensitive, aptamer-based platform which overcomes
limitations associated with antibody-based methods, such as
cross-reactivity26. Moreover, Olink® technology is particularly
effective in limiting the reporting of cross-reactive events. How-
ever, when compared to these platforms, other technologies such
as mass-spectrometry can produce highly accurate measurements
but with low sensitivity27. Lack of standardisation amongst pro-
teomic platforms, insufficient power to detect associations and
differences in study demographics may all contribute to varia-
bility in the detection of pQTLs for a given protein. In addition,
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we performed both FUMA (LD-based method) and COJO
(stepwise conditional regression) to identify independent pQTL-
protein associations and found a small overlap (17%) between
SNPs identified by both methods. However, SNPs which were
differentially identified by COJO and FUMA for a given protein
were located within the same region. Indeed, the maximum dis-
tance between discordant SNPs for a given protein was 3Mb.

We acknowledge several limitations in the present study. First,
analyses were restricted to individuals of European descent,
complicating the generalisability of our findings to individuals of
other ethnic backgrounds. Second, functional enrichment ana-
lyses indicated that a number of cis pQTL variants may alter the
amino acid sequence of the coded protein. This may lead to
altered structural properties of the protein product, resulting in
impaired antibody–antigen binding and consequently, the ability
of assays to accurately detect protein levels. Notably, as the
LBC1936 cohort consists of relatively healthy older adults, it is
possible that levels of putative neurological-disease related pro-
teins may differ in the general elderly population. Therefore, this
may complicate the generalisability of our findings to other age
ranges and other elderly cohorts with higher incidences of neu-
rological and psychiatric conditions. Finally, as our findings
pertain to whole blood samples, studies examining the genetic
and epigenetic regulation of neurological proteins in post-mortem
brain tissue are warranted.

In conclusion, we have identified genetic and epigenetic factors
associated with neurological proteins in an older-age population.
We have shown that use of a multi-omics approach can help
define whether such proteins are causal in disease processes. We
have shown that PVR may be causally associated with AD. Fur-
thermore, we have provided a platform upon which future studies
can interrogate pathophysiological mechanisms underlying neu-
rological conditions. Together, this information may help inform
disease biology, as well as aid in the prediction of disease risk and
progression in clinical settings.

Methods
The Lothian Birth Cohort 1936. The Lothian Birth Cohort 1936 (LBC1936)
comprises Scottish individuals born in 1936, most of whom took part in the
Scottish Mental Survey 1947 at age 11. Participants who were living within
Edinburgh and the Lothians were re-contacted approximately 60 years later, 1091
consented and joined the LBC1936. Upon recruitment, participants were
approximately 70 years of age (mean age: 69.6 ± 0.8 years). Participants subse-
quently attended four additional waves of clinical examinations every three years.
Detailed genetic, epigenetic, physical, psychosocial, cognitive, health and lifestyle
data are available for members of the LBC1936. Recruitment and testing of the
LBC1936 cohort have been described previously28,29. LBC1936 participants were
49.8% female. Key inclusion/exclusion criteria for the present study are highlighted
in Supplementary Fig. 2.

Ethical approval. Ethical permission for the LBC1936 was obtained from the
Multi-Centre Research Ethics Committee for Scotland (MREC/01/0/56) and the
Lothian Research Ethics Committee (LREC/2003/2/29). Written informed consent
was obtained from all participants.

Protein measurements in the Lothian Birth Cohort 1936. Plasma was extracted
from 816 blood samples collected in citrate tubes at mean age 72.5 ± 0.7 years
(Wave 2). Plasma samples were analysed using a 92-plex proximity extension assay
(Olink® Bioscience, Uppsala Sweden). The proteins assayed constitute the Olink®
neurology biomarker panel. This panel represents proteins with established links to
neuropathology, as well as exploratory proteins with roles in processes including
cellular communication and immunology. In brief, 1 µL of sample was incubated in
the presence of proximity antibody pairs linked to DNA reporter molecules. Upon
binding of an antibody pair to their corresponding antigen, the respective DNA
tails form an amplicon by proximity extension, which can be quantified by high-
throughput real-time PCR. This method limits the reporting of cross-reactive
events. The data were pre-processed by Olink® using NPX Manager software.
Protein levels were transformed by rank-based inverse normalisation. Normalised
plasma protein levels were then regressed onto age, sex, four genetic principal
components of ancestry derived from the Illumina 610-Quadv1 genotype array (to
control for population structure) and Olink® array plate. To obtain an estimate of

population structure, multidimensional scaling (MDS) was performed on LBC1936
genotyping data and the first four MDS components were used to control for
genetic ancestry in the analytic models. Standardised residuals from these linear
regression models were used in our genome-wide and epigenome-wide association
studies. Pre-adjusted (raw) and transformed (rank-based inverse normalised levels
regressed on age, sex, population structure and array plate) protein levels are
presented in Supplementary Data 10 and 11, respectively. The associations of pre-
adjusted protein levels with biological and technical covariates are presented in
Supplementary Data 12.

Methylation preparation in the Lothian Birth Cohort 1936. DNA from whole
blood was assessed using the Illumina 450 K methylation array at the Edinburgh
Clinical Research Facility (Wave 2; n= 895; mean age: 72.5 ± 0.7 years). Details of
quality control procedures have been described in detail elsewhere30. Briefly, raw
intensity data were background-corrected and normalised using internal controls.
Following background correction, manual inspection permitted removal of low
quality samples presenting issues relating to bisulphite conversion, staining signal,
inadequate hybridisation or nucleotide extension. Quality control analyses were
performed to remove probes with low detection rate <95% at P < 0.01. Samples
with a low call rate (samples with <450,000 probes detected at p-values of less than
0.01) were also eliminated. Furthermore, samples were removed if they had a poor
match between genotype and SNP control probes, or incorrect DNA methylation-
predicted sex.

Genotyping in the Lothian Birth Cohort 1936. LBC1936 DNA samples were
genotyped at the Edinburgh Clinical Research Facility using the Illumina 610-
Quadv1 array (Wave 1; n= 1005; mean age: 69.6 ± 0.8 years; San Diego). Pre-
paration and quality control steps have been reported previously31. SNPs were
imputed to the 1000 G reference panel (phase 1, version 3). Individuals were
excluded on the basis of sex discrepancies, relatedness, SNP call rate of less than
0.95, and evidence of non-Caucasian descent. SNPs with a call rate of greater than
0.98, minor allele frequency in excess of 0.01, and Hardy-Weinberg equilibrium
test with P ≥ 0.001 were included in analyses.

Genome-wide association studies. Genome-wide association analyses were
conducted on 8,683,751 autosomal variants against protein residuals in 750 indi-
viduals from the Lothian Birth Cohort 1936. Linear regression was used to assess
the effect of each genetic variant on the protein residuals using mach2qtl32,33.

GWAS model: Olink® protein residuals~SNP

Epigenome-wide association studies. Epigenome-wide association analyses were
conducted by regressing each of 459,309 CpG sites (as dependent variables) on
transformed protein levels using linear regression with adjustments for age, sex,
estimated white blood cell proportions (CD4+ T cells, CD8+ T cells, B cells,
Natural Killer Cells and granulocytes) and technical covariates (plate, position,
array, hybridisation, date). White blood cell proportions were estimated from
methylation data using the Houseman method34. Outliers for white blood cell
proportions (n= 22) were excluded prior to analyses. Complete methylation and
proteomic data were available for 692 individuals. Genome-wide significant CpG
associations mapping to sites with underlying polymorphisms were excluded, as
well as those predicted to cross-hybridise based on findings by Chen et al.35.
Analyses were performed using the limma package in R36.

EWAS model: CpG site~Olink® protein residuals+ age+ sex+ estimated
white blood cell proportions+ array+ plate+ date+ set+ position

Pathway enrichment was assessed among KEGG pathways and Gene Ontology
(GO) terms via hypergeometric tests using the phyper function in R. All gene
symbols from the 450 K array annotation (null set of sites) were converted to
Entrez IDs using biomaRt37,38. GO terms and their corresponding gene sets were
obtained from the Molecular Signatures Database (MSigDB)-C539 while KEGG
pathways were downloaded from the KEGG REST server40. Furthermore, tissue
specificity analyses were conducted using the GENE2FUNC function in FUnctional
Mapping and Annotation (FUMA). Differentially expressed gene sets with
Bonferroni-corrected P values of <0.05 and an absolute log-fold change of ≥0.58
(default settings) were considered to be enriched in a given tissue type (GTEx v7).

OSCA. We also performed EWAS analyses of Olink® protein levels using OmicS-
data-based Complex trait Analysis software (OSCA). We carried out OSCA as an
additional EWAS analysis as it has recently been shown to identify less spurious
associations when compared to other methods (including linear regression)41. CpG
site was the independent variable whereas Olink® protein levels were input as
dependent variables. Models were adjusted for age, sex, estimated white blood cell
proportions (CD4+ T cells, CD8+ T cells, B cells, Natural Killer Cells and gran-
ulocytes) and technical covariates (plate, position, array, hybridisation, date) as
in the previous section. The MOMENT method was used to test for associations
between traits of interest and DNAm at individual probes. MOMENT is a mixed-
linear-model-based method that can account for unobserved confounders and the
correlation between distal probes which may be introduced by such confounders.
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Conditional and joint analysis. We performed approximate genome-wide step-
wise conditional analysis through GCTA-COJO using the ‘cojo-slct’ option as the
primary means to identify independent genetic-protein associations42. Individual
level genotype data were used with default settings of the software.

Functional mapping and annotation of pQTLs. In addition to GCTA-COJO, the
identification of independent pQTL variants from the GWAS which yielded sig-
nificant genotype-protein associations, and their subsequent functional annotation,
were performed using the independent SNP algorithm implemented in FUMA
analysis43. Initial independent significant SNPs were identified using the
SNP2GENE function. These were defined as variants with a P value of <5 × 10−8

that were independent of other genome-wide significant SNPs at r2 < 0.6. Lead
independent SNPs were further defined as the initial independent significant SNPs
that were independent from each other at r2 < 0.1. Independent significant SNPs
were functionally annotated using ANNOVAR44 and Ensembl genes (build 85).

Characterisation of cis and trans effects. Genome-wide significant pQTLs and
CpG sites were categorised into cis and trans effects. Cis associations were defined
as loci which reside within 10Mb of the TSS of the gene encoding the protein of
interest. Trans effects were defined as those loci which lay outside of this region or
were located on a chromosome distinct from that which harboured the gene TSS.
TSS positions were defined using the biomaRt package in R37,38 and Ensembl v83.

Identification of overlap between cis pQTLs and eQTLs. We cross-referenced
sentinel cis pQTLs with publicly available cis eQTL data from the eQTLGen
consortium45. Cis eQTLs were filtered to retain only variants with P < 5.4 × 10−10.
Furthermore, only cis eQTLs for the same gene as the cis pQTL protein were
retained. These associations were then tested for colocalisation.

Colocalisation analysis. To test the hypothesis that a single causal variant might
underlie both an eQTL and pQTL, resulting in modulation of transcript and
protein levels, we conducted Bayesian tests of colocalisation. Colocalisation ana-
lyses were performed using the coloc package in R46. For each pQTL variant, a
200 kb region (upstream and downstream) was extracted from our GWAS sum-
mary statistics for each protein of interest. This window previously has been
recommended in order to capture cis eQTLs, which often lie within 100 kb of their
target gene47. Expression QTLs for genes within this region were extracted from
eQTLGen consortium summary statistics and subset to the gene encoding the
protein of interest45. All SNPs shared by transcripts and proteins were used to
determine the posterior probability for five distinct hypothesis. Default priors were
applied. Posterior probabilities (PP) > 0.95 provided strong evidence in favour of a
given hypothesis. Hypothesis 4 states that two association signals were attributable
to the same causal variant. Associations with PP4 > 0.95 were deemed highly likely
to colocalise. Associations with PP3 > 0.95 provided strong evidence for hypothesis
3 that there were independent causal variants for protein levels and gene expres-
sion. In this study, hypothesis 2 referred to a causal variant for condition 2 (gene
expression only) whereas hypothesis 1 represented a causal variant for protein
levels only. Associations with PP0 > 0.95 (for hypothesis 0) indicated that it is
highly likely there were no causal variants for either trait in the region.

Mendelian randomisation. Two-sample bidirectional Mendelian randomisation
was used to test for putatively causal relationships between (i) PVR, a cell-surface
glycoprotein, and AD risk, (ii) gene expression and plasma protein levels and (iii)
DNA methylation and plasma protein levels. Pruned variants (LD r2 < 0.1) were
used as instrumental variables (IV) in MR analyses. In cases where only one
independent SNP remained after LD pruning, causal effect estimates were deter-
mined using the Wald ratio test. When multiple independent variants were present,
and if no evidence of directional pleiotropy was present (non-significant MR-Egger
intercept), multi-SNP MR was conducted using inverse variance-weighted esti-
mates. All MR analyses were conducted using MRbase48.

(i) While 72 genome-wide significant cis pQTLs were identified for PVR levels,
only one SNP (rs7255066) remained after LD pruning. Five independent
SNPs were identified and used as IV to test for a causal relationship between
AD risk and altered plasma PVR levels.

(ii) Expression QTLs obtained from eQTLGen consortium were used as IV to
test whether changes in gene expression were causally associated with
protein levels45. Protein QTLs identified by our GWAS were used as IV to
test whether protein levels were causally associated with altered gene
expression.

(iii) For the three proteins with GWAS and EWAS associations (MATN3,
MDGA1 and NEP), we wished to test whether methylation affected protein
levels and/or whether protein levels affected methylation. We queried
Phenoscanner to examine whether pQTLs for protein levels of MATN3,
MDGA1 and NEP, identified in this study, were previously identified as
methylation QTLs (mQTLs) for corresponding genome-wide significant
CpG sites49. Methylation QTLs were used as IV to test whether changes in
DNA methylation were causally associated with Olink® protein levels.
Conversely, pQTLs were used as IV to determine whether altered protein

levels were causally linked to differential methylation levels. Of note, as
methylation of the 11 cis CpG sites associated with differential MDGA1
levels in our study are highly inter-correlated (Supplementary Fig. 3), we
considered only the most significant cis CpG site (cg20053110) for MR
analyses.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Full and openly accessible summary statistics from the association studies on Olink®
neurology protein levels are available on the University of Edinburgh Datashare site
(https://datashare.is.ed.ac.uk/). For GWAS data, see: https://datashare.is.ed.ac.uk/handle/
10283/3366; https://doi.org/10.7488/ds/2580. For EWAS data, see: https://datashare.is.ed.
ac.uk/handle/10283/3367; https://doi.org/10.7488/ds/2581.

Code availability
Code will be available from the authors on request.
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