81 research outputs found

    MLS Measurements of Stratospheric Hydrogen Cyanide During the 2015-2016 El Niño Event

    Get PDF
    It is known from ground-based measurements made during the 1982-1983 and 1997-1998 El Niño events that atmospheric hydrogen cyanide (HCN) tends to be higher during such years than at other times. The Microwave Limb Sounder (MLS) on the Aura satellite has been measuring HCN mixing ratios since launch in 2004; the measurements are ongoing at the time of writing. The winter of 2015- 2016 saw the largest El Niño event since 1997-1998. We present MLS measurements of HCN in the lower stratosphere for the Aura mission to date, comparing the 2015- 2016 El Niño period to the rest of the mission. HCN in 2015- 2016 is higher than at any other time during the mission, but ground-based measurements suggest that it may have been even more elevated in 1997-1998. As the MLS HCN data are essentially unvalidated, we show them alongside data from the MIPAS and ACE-FTS instruments; the three instruments agree reasonably well in the tropical lower stratosphere. Global HCN emissions calculated from the Global Fire Emissions Database (GFED v4.1) database are much greater during large El Niño events and are greater in 1997- 1998 than in 2015-2016, thereby showing good qualitative agreement with the measurements. Correlation between El Niño-Southern Oscillation (ENSO) indices, measured HCN, and GFED HCN emissions is less clear if the 2015-2016 event is excluded. In particular, the 2009-2010 winter had fairly strong El Niño conditions and fairly large GFED HCN emissions, but very little effect is observed in the MLS HCN

    Retrievals of heavy ozone with MIPAS

    Get PDF
    A method for retrieval of 18^{18}O-substituted isotopomers of O₃ in the stratosphere with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is presented. Using a smoothing regularisation constraint, volume mixing ratio profiles are retrieved for the main isotopologue and the symmetric and asymmetric isotopomers of singly substituted O₃. For the retrieval of the heavy isotopologues, two microwindows in the MIPAS A band (685-970 cm1^{-1}) and six in the AB band (1020-1170 cm1^{-1}) are used. As the retrievals are performed as perturbations on the previously retrieved a priori profiles, the vertical resolution of the individual isotopomer profiles is very similar, which is important when calculating the ratio between two isotopomers. The performance of the method is evaluated using 1044 vertical profiles recorded with MIPAS on 1 July 2003. The mean values are separated by latitude bands, along with estimates of their uncertainties. The asymmetric isotopomer shows a mean enrichment of ~ 8 %, with a vertical profile that increases up to 33 km and decreases at higher altitudes. This decrease with altitude is a robust result that does not depend on retrieval settings, and it has not been reported clearly in previously published datasets. The symmetric isotopomer is considerably less enriched, with mean values around 3% and with a large spread. In individual retrievals the uncertainty of the enrichment is dominated by the measurement noise (2-4 %), which can be reduced by averaging multiple retrievals; systematic uncertainties linked to the retrieval are generally small at ~ 0.5 %, but this is likely underestimated because the uncertainties in key spectroscopic parameters are unknown. The variabilities in the retrieval results are largest for the Southern Hemisphere

    Inverse modelling of carbonyl sulfide: implementation, evaluation and implications for the global budget

    Get PDF
    Carbonyl sulfide (COS) has the potential to be used as a climate diagnostic due to its close coupling to the biospheric uptake of CO2 and its role in the formation of stratospheric aerosol. The current understanding of the COS budget, however, lacks COS sources, which have previously been allocated to the tropical ocean. This paper presents a first attempt at global inverse modelling of COS within the 4-dimensional variational data-assimilation system of the TM5 chemistry transport model (TM5-4DVAR) and a comparison of the results with various COS observations. We focus on the global COS budget, including COS production from its precursors carbon disulfide (CS2) and dimethyl sulfide (DMS). To this end, we implemented COS uptake by soil and vegetation from an updated biosphere model (Simple Biosphere Model-SiB4). In the calculation of these fluxes, a fixed atmospheric mole fraction of 500 pmol mol-1 was assumed. We also used new inventories for anthropogenic and biomass burning emissions. The model framework is capable of closing the COS budget by optimizing for missing emissions using NOAA observations in the period 2000-2012. The addition of 432 Gg a-1 (as S equivalents) of COS is required to obtain a good fit with NOAA observations. This missing source shows few year-to-year variations but considerable seasonal variations. We found that the missing sources are likely located in the tropical regions, and an overestimated biospheric sink in the tropics cannot be ruled out due to missing observations in the tropical continental boundary layer. Moreover, high latitudes in the Northern Hemisphere require extra COS uptake or reduced emissions. HIPPO (HIAPER Pole-to-Pole Observations) aircraft observations, NOAA airborne profiles from an ongoing monitoring programme and several satellite data sources are used to evaluate the optimized model results. This evaluation indicates that COS mole fractions in the free troposphere remain underestimated after optimization. Assimilation of HIPPO observations slightly improves this model bias, which implies that additional observations are urgently required to constrain sources and sinks of COS. We finally find that the biosphere flux dependency on the surface COS mole fraction (which was not accounted for in this study) may substantially lower the fluxes of the SiB4 biosphere model over strong-uptake regions. Using COS mole fractions from our inversion, the prior biosphere flux reduces from 1053 to 851 Gg a-1, which is closer to 738 Gg a-1 as was found by Berry et al. (2013). In planned further studies we will implement this biosphere dependency and additionally assimilate satellite data with the aim of better separating the role of the oceans and the biosphere in the global COS budget..</p

    Validation and data characteristics of methane and nitrous oxide profiles observed by MIPAS and processed with Version 4.61 algorithm

    Get PDF
    The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements

    A reassessment of the discrepancies in the annual variation of δD-H₂O in the tropical lower stratosphere between the MIPAS and ACE-FTS satellite data sets

    Get PDF
    The annual variation of δD in the tropical lower stratosphere is a critical indicator for the relative importance of different processes contributing to the transport of water vapour through the cold tropical tropopause region into the stratosphere. Distinct observational discrepancies of the δD annual variation were visible in the works of Steinwagner et al. (2010) and Randel et al. (2012). Steinwagner et al. (2010) analysed MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) observations retrieved with the IMK/IAA (Institut für Meteorologie und Klimaforschung in Karlsruhe, Germany, in collaboration with the Instituto de Astrofísica de Andalucía in Granada, Spain) processor, while Randel et al. (2012) focused on ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations. Here we reassess the discrepancies based on newer MIPAS (IMK/IAA) and ACE-FTS data sets, also showing for completeness results from SMR (Sub-Millimetre Radiometer) observations and a ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg and Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulation (Eichinger et al., 2015b). Similar to the old analyses, the MIPAS data set yields a pronounced annual variation (maximum about 75 ‰), while that derived from the ACE-FTS data set is rather weak (maximum about 25 ‰). While all data sets exhibit the phase progression typical for the tape recorder, the annual maximum in the ACE-FTS data set precedes that in the MIPAS data set by 2 to 3 months. We critically consider several possible reasons for the observed discrepancies, focusing primarily on the MIPAS data set. We show that the δD annual variation in the MIPAS data up to an altitude of 40 hPa is substantially impacted by a “start altitude effect”, i.e. dependency between the lowermost altitude where MIPAS retrievals are possible and retrieved data at higher altitudes. In itself this effect does not explain the differences with the ACE-FTS data. In addition, there is a mismatch in the vertical resolution of the MIPAS HDO and H2O data (being consistently better for HDO), which actually results in an artificial tape-recorder-like signal in δD. Considering these MIPAS characteristics largely removes any discrepancies between the MIPAS and ACE-FTS data sets and shows that the MIPAS data are consistent with a δD tape recorder signal with an amplitude of about 25 ‰ in the lowermost stratosphere

    The Australian bushfires of February 2009: MIPAS observations and GEM-AQ model results

    Get PDF
    Starting on 7 February 2009, southeast Australia was devastated by large bushfires, which burned an area of about 3000 km&lt;sup&gt;2&lt;/sup&gt; on this day alone. This event was extraordinary, because a large number of combustion products were transported into the uppermost troposphere and lower stratosphere within a few days. Various biomass burning products released by the fire were observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the Envisat satellite. We tracked the plume using MIPAS C&lt;sub&gt;2&lt;/sub&gt;H&lt;sub&gt;2&lt;/sub&gt;, HCN and HCOOH single-scan measurements on a day-to-day basis. The measurements were compared with a high-resolution model run of the Global Environmental Multiscale Air Quality (GEM-AQ) model. Generally there is good agreement between the spatial distribution of measured and modelled pollutants. Both MIPAS and GEM-AQ show a fast southeastward transport of the pollutants to New Zealand within one day. During the following 3–4 days, the plume remained northeastward of New Zealand and was located at altitudes of 15 to 18 km. Thereafter its lower part was transported eastward, followed by westward transport of its upper part. On 17 February the eastern part had reached southern South America and on 20 February the central South Atlantic. On the latter day a second relic of the plume was observed moving eastward above the South Pacific. Between 20 February and the first week of March, the upper part of the plume was transported westward over Australia and the Indian Ocean towards southern Africa. First evidence for entry of the pollutants into the stratosphere was found in MIPAS data of 11 February, followed by larger amounts on 17 February and the days thereafter. From MIPAS data, C&lt;sub&gt;2&lt;/sub&gt;H&lt;sub&gt;2&lt;/sub&gt;/HCN and HCOOH/HCN enhancement ratios of 0.76 and 2.16 were calculated for the first days after the outbreak of the fires, which are considerably higher than the emission ratios assumed for the model run and at the upper end of values found in literature. From the temporal decrease of the enhancement ratios, mean lifetimes of 16–20 days and of 8–9 days were calculated for measured C&lt;sub&gt;2&lt;/sub&gt;H&lt;sub&gt;2&lt;/sub&gt; and HCOOH. The respective lifetimes calculated from the model data are 18 and 12 days
    corecore