8 research outputs found

    Motor Unit-Driven Identification of Pathological Tremor in Electroencephalograms.

    Get PDF
    Background: Traditional studies on the neural mechanisms of tremor use coherence analysis to investigate the relationship between cortical and muscle activity, measured by electroencephalograms (EEG) and electromyograms (EMG). This methodology is limited by the need of relatively long signal recordings, and it is sensitive to EEG artifacts. Here, we analytically derive and experimentally validate a new method for automatic extraction of the tremor-related EEG component in pathological tremor patients that aims to overcome these limitations. Methods: We exploit the coupling between the tremor-related cortical activity andmotor unit population firings to build a linearminimummean square error estimator of the tremor component in EEG. We estimated the motor unit population activity by decomposing surface EMG signals into constituent motor unit spike trains, which we summed up into a cumulative spike train (CST). We used this CST to initialize our tremor-related EEG component estimate, which we optimized using a novel approach proposed here. Results: Tests on simulated signals demonstrate that our new method is robust to both noise and motor unit firing variability, and that it performs well across a wide range of spectral characteristics of the tremor. Results on 9 essential (ET) and 9 Parkinson’s disease (PD) patients show a ∼2-fold increase in amplitude of the coherence between the estimated EEG component and the CST, compared to the classical EEG-EMG coherence analysis. Conclusions: We have developed a novel method that allows for more precise and robust estimation of the tremor-related EEG component. This method does not require artifact removal, provides reliable results in relatively short datasets, and tracks changes in the tremor-related cortical activity over time.post-print2672 K

    The Phase Difference Between Neural Drives to Antagonist Muscles in Essential Tremor Is Associated with the Relative Strength of Supraspinal and Afferent Input.

    Get PDF
    The pathophysiology of essential tremor (ET), the most common movement disorder, is not fully understood. We investigated which factors determine the variability in the phase difference between neural drives to antagonist muscles, a long-standing observation yet unexplained. We used a computational model to simulate the effects of different levels of voluntary and tremulous synaptic input to antagonistic motoneuron pools on the tremor. We compared these simulations to data from 11 human ET patients. In both analyses, the neural drive to muscle was represented as the pooled spike trains of several motor units, which provides an accurate representation of the common synaptic input to motoneurons. The simulations showed that, for each voluntary input level, the phase difference between neural drives to antagonist muscles is determined by the relative strength of the supraspinal tremor input to the motoneuron pools. In addition, when the supraspinal tremor input to one muscle was weak or absent, Ia afferents provided significant common tremor input due to passive stretch. The simulations predicted that without a voluntary drive (rest tremor) the neural drives would be more likely in phase, while a concurrent voluntary input (postural tremor) would lead more frequently to an out-of-phase pattern. The experimental results matched these predictions, showing a significant change in phase difference between postural and rest tremor. They also indicated that the common tremor input is always shared by the antagonistic motoneuron pools, in agreement with the simulations. Our results highlight that the interplay between supraspinal input and spinal afferents is relevant for tremor generation.post-print2260 K

    Motor Unit-Driven Identification of Pathological Tremor in Electroencephalograms

    Get PDF
    Background: Traditional studies on the neural mechanisms of tremor use coherence analysis to investigate the relationship between cortical and muscle activity, measured by electroencephalograms (EEG) and electromyograms (EMG). This methodology is limited by the need of relatively long signal recordings, and it is sensitive to EEG artifacts. Here, we analytically derive and experimentally validate a new method for automatic extraction of the tremor-related EEG component in pathological tremor patients that aims to overcome these limitations.Methods: We exploit the coupling between the tremor-related cortical activity and motor unit population firings to build a linear minimum mean square error estimator of the tremor component in EEG. We estimated the motor unit population activity by decomposing surface EMG signals into constituent motor unit spike trains, which we summed up into a cumulative spike train (CST). We used this CST to initialize our tremor-related EEG component estimate, which we optimized using a novel approach proposed here.Results: Tests on simulated signals demonstrate that our new method is robust to both noise and motor unit firing variability, and that it performs well across a wide range of spectral characteristics of the tremor. Results on 9 essential (ET) and 9 Parkinson's disease (PD) patients show a ~2-fold increase in amplitude of the coherence between the estimated EEG component and the CST, compared to the classical EEG-EMG coherence analysis.Conclusions: We have developed a novel method that allows for more precise and robust estimation of the tremor-related EEG component. This method does not require artifact removal, provides reliable results in relatively short datasets, and tracks changes in the tremor-related cortical activity over time

    Blind Separation of Multichannel Surface Electromyograms During Dynamic Muscle Contractions

    Get PDF
    Analiza elektromiogramov (EMG) je v medicini izredno pomembna in pogosto predstavlja ključen del diagnostike. V Laboratoriju za sistemsko programsko opremo UM FERI je bila v preteklosti razvita metoda kompenzacije konvolucijskih jeder (ang. convolution kernel compensation - CKC), ki signale EMG dekomponira na prispevke posameznih motoričnih enot. Ta metoda je bila obširno testirana in se je v primeru izometričnih mišičnih skrčitev izkazala za izredno učinkovito. V primeru dinamičnih mišičnih skrčitev pa nastopijo geometrijske deformacije mišičnega tkiva, ki močno zmanjšajo učinkovitost metode CKC. V doktorski disertaciji podrobno preučimo spremembe površinskih signalov EMG pri dinamičnih mišičnih skrčitvah in predstavimo dva nova algoritma za njihovo dekompozicijo na prispevke motoričnih enot. Oba algoritma izhajata iz metode CKC. Prvi algoritem izkorišča v doktorski disertaciji predstavljeno ugotovitev, da so nepotujoče komponente akcijskih potencialov motoričnih enot (APME) bistveno manj občutljive na geometrijske spremembe mišice kot potujoče komponente APME in metodo CKC prilagodi zaznavi nepotujočih komponent APME. Drugi postopek temelji na dinamični obtežitvi prispevkov posameznih motoričnih enot v izmerjenih signalih EMG in s tem omogoči avtomatsko prilagajanje metode CKC dinamičnim spremembam APME. Oba algoritma smo ovrednotili s sintetičnimi in z eksperimentalnimi površinskimi signali EMG. V ta namen smo obstoječi napredni simulator površnikih signalov EMG funkcionalno dogradili tako, da simulira dinamične mišične skrčitve in z njimi analizira vpliv šuma, prostorskih filtrov in razpona dinamičnih skrčitev na učinkovitost obeh predstavljenih algoritmov. Eksperimentalne signale smo izmerili nad mišicama vastus lateralis in rectus femoris pri petih zdravih mladih preiskovancih. Izmerili smo dve hitrosti upogiba kolenskega sklepa, in sicer 5 °/s in 10 °/s. V vseh testih se je za najbolj učinkovito izkazala metoda z dinamično obtežitvijo prispevkov motoričnih enot, ki je v primeru mišice vastus lateralis z visoko natančnostjo razpoznala 6,5 ± 1,8, v primeru mišice rectus femoris pa 4,5 ± 1,6 motoričnih enot. Metoda, ki temelji na uporabi nepotujoče komponente APME, je bila statistično značilno manj učinkovita, še zlasti v primeru eksperimentalnih signalov EMG.Analysis of electromyograms (EMG) is of great importance in medicine as it often represents a key part of medical diagnostics. In the last decade, the method called Convolution Kernel Compensation (CKC) was developed in System Software Laboratory at Faculty of Electrical Engineering and Computer Science, University of Maribor. This method successfully decomposes EMG signals into contributions of individual motor units. It was extensively tested in different experimental conditions and has proven to be very efficient in the case of isometric muscle contractions. However, this is no longer the case in dynamic muscle contractions. The latter introduce geometrical deformations of muscle tissues which drastically affect the CKC method. In this thesis, we study changes of surface EMG in the case of dynamic muscle contractions and introduce two new surface EMG decomposition approaches. Both approaches are based on the CKC method. The first algorithm builds on the notion that measured motor unit action potentials (MUAPs) combine travelling and non-travelling components. We demonstrate that non-travelling component is significantly less prone to geometric deformations of a muscle than its traveling counterpart. For this reason we focus our decomposition on non-travelling component of a MUAP only. The second algorithm is based on dynamical weighting of contributions from individual motor units in CKC and adapts very well to the dynamic changes of MUAPs. Both approaches have been tested on synthetic and experimental surface EMG signals. Synthetic signals have been generated with adapted surface EMG simulator that discretises the muscle contractions and supports systematic testing of noise impact, effect of spatial filters and different speeds and ranges of dynamic contractions. Experimental surface EMG signals have been obtained from vastus lateralis and rectus femoris muscles of five young healthy subjects during knee bending at speeds of 5°/s and 10°/s, respectively. The best results were obtained with dynamical weighting of motor unit contributions. This method detected with high reliability 6.5 ± 1.8 and 4.5 ± 1.6 motor units in vastus lateralis and rectus femoris muscle, respectively. The method using non-travelling MUAP component was significantly less efficient, especially in the case of experimental EMG signals

    VALIDATION OF SEQUENTIAL DECOMPOSITION ON COMPOSITE SIGNALS USING CONVOLUTION KERNEL COMPENSATION

    Get PDF
    Analiza bioelektričnih signalov, ki jih lahko izmerimo na človeškem telesu, je pomemben sestavni del diagnosticiranja v medicini. Klinična diagnoza za mnoge mišične in živčne bolezni se da postaviti dosti zanesljiveje, če lahko ugotovimo, kakšni so prispevki posameznih delov mišic v skupnem bioelektričnem signalu, imenovanem elektromiogram (EMG). V Laboratoriju za sistemsko programsko opremo so razvili dekompozicijski postopek za signale EMG. Temelji na inverzu korelacijske matrike in se imenuje kompenzacija konvolucijskih jeder (CKC). Metoda je zelo uspešna in je bila obširno klinično preizkušena. CKC deluje bločno, z daljšimi odseki signalov, kar ne omogoča analize meritev v realnem času, zato je bil postopek modificiran v sekvenčno različico CKC, imenovano sekvenčna CKC (sCKC). Njeno bistvo je, da dela iterativno in posodablja komponente iz formule CKC med meritvami ob zajemu vsakega novega nabora vzorcev. V magistrski nalogi smo izboljšali algoritme, vgrajene v sCKC, in delovanje nove zasnove preizkusili v različnih, zahtevnih razmerah. Najprej smo preverili vpliv števila vzorcev, ki so vključeni v inicializacijski del postopka. Izhajali smo iz CKC in ugotavljali, kako kratki so lahko signalni odseki, da so dekompozicijski rezultati še zadovoljivi. Pokazalo se je, da CKC da zadovoljive rezultate, če so signali dolgi vsaj 2 do 3 s, medtem ko se število zaznanih motoričnih enot (ME) pri signalih, daljših od 5 s, ne spreminja. Nato smo preverili, kako dobro se sCKC obnese pri dekompoziciji sintetičnih in realnih signalov EMG. V vseh primerih je bil signalom dodan šum različnih moči, opredeljen z razmerjem signal-šum (SNR). Pri razcepu sintetičnih EMG smo primerjali rezultate sCKC in referenčne metode LMMSE (Linear Minimum Mean Square Error). Za ocenjevanje sprejemljivosti dekomponiranih vlakov inervacijskih impulzov smo uporabljali dve meri: senzitivnost (število pravilno postavljenih impulzov) in delež napačno postavljenih impulzov. V vseh šumnih primerih je sCKC zaznala število ME, primerljivo s številom ME pri CKC, to pa je med 5 in 10 ME. Preizkušali smo tudi vpliv števila vzorcev, vključenih v posamezen posodobitveni korak, in ugotovili, da število vzorcev v posodobitvenem koraku vpliva izključno na čas izvajanja sCKC, ki se z večanjem števila vzorcev povečuje s kubom. Z analizo dekompozicije sintetičnih EMG smo lahko nazorno pokazali, da CKC in sCKC uspešno odkrijeta motorične enote (ME), ki so najbliže merilnim elektrodam. Oddaljenost oziroma globina razpoznanih ME v mišici je večja, če je SNR večji. Izboljšano sCKC smo preizkusili tudi z realnimi signali EMG. Izmerjeni so bili pri krčenju dveh različnih mišic, in sicer biceps brachii in tibialis anterior. Za referenčno metodo je služila CKC, saj LMMSE zahteva apriorne informacije o odzivih ME, ki pri realnih signalih niso znani. Ponovno se je sCKC postavila ob bok CKC glede na število zaznanih ME, ki smo jih zaznali med 3 in 9. Edina razlika je, da sCKC ustvari več nepopolnih dekompozicij, ki jih je glede na vse zaznane ME okoli 20 %. Izhodiščna zahteva pri razvoju sCKC je bila, da deluje realnočasovno. Zato smo z analitičnimi izračuni časovne zahtevnosti in izmerjenimi časi posameznih delov algoritma sCKC pokazali, da je sCKC ob pravilni izbiri števila vzorcev v posodobitvi bistveno hitrejša od CKC, vendar na žalost še ne izpolnjuje pogojev za realnočasovno obdelavo.The analysis of bioelectrical signals that can be measured on the human body is an important component of medical diagnosing. Clinical diagnosis for many muscular and nerve diseases can be set much more reliable if the contribution of particular parts of muscles are established in the common bioelectrical signal called electromyograms (EMG). The System Software Laboratory developed a decomposition procedure for EMG signals. It is based on the inverse correlation matrix and called Convolution Kernel Composition (CKC). The method is very successful and has been thoroughly clinically tested. CKC operates on longer signal segments, which prevents it to perform in real-time. Therefore, the method was modified and a sequential version was derived under the name sequential CKC (sCKC). The advantage of sequential CKC is that it works iteratively by updating the components of the CKC formula along with the measurements, whenever a new set of samples is available. In this masters thesis, we proposed improvements the algorithms in sCKC and tested them in different complicated situations. First test intended to assess the influence of the number of samples in the initialization part of the algorithm. We derived from CKC in order to determine the smallest length of signals that are properly decomposed. We found out that CKC decomposes correct pulse trains if signals are longer than 2 s, while the decomposition results remain unchanged for the signal length above 5 s. Next, sCKC was tested on synthetic and real signals. In all the cases noise was added with several different signal-to-noise ratios (SNR). In all cases where synthetic signals were used the sCKC results were compared to LMMSE (Linear Minimum Mean Square Error) decompositions. Two performance metrics were used: sensitivity (the number of properly placed pulses) and the false alarm rate (the number of misplaced pulses). In all noisy cases sCKC performed with the same recognition rate as CKC, which means 5 to 10 detected motor units (MU). The influence of the number of samples in each update step was also tested, where it was proved that the number of samples in each update step influences only the computational time, which increases cubically with the number of samples, and not the decomposition quality. Further analysis also showed that both sCKC and CKC decompose pulse trains from MUs that are closer to the electrodes, where the depth of recognized MUs increases with higher SNRs. The upgraded sCKC was then tested on real signals measured from two different muscles: Biceps Brachii and Tibialis Anterior. In this case CKC was used as a reference method, because LMMSE needs prior information on MUs’ responses, which is not available for real signals. Again the sCKC detected as many MUs as CKC, i.e. between 3 and 9. The only difference was that sCKC produced some incomplete decomposition totalling in 20% according to the number of correct detections. The initial requirement in developing sCKC was that it operates in real time. Therefore we used the analytical calculations and measured the time complexity of individual parts of the sCKC algorithm. We showed that sCKC works much faster than the CKC if the optimum number of samples for updating is introduced. However, it still does not qualify for real-time processing when executed on today’s workstations

    Real-time motor unit identification from high-density surface EMG

    No full text
    This study addresses online decomposition of high-density surface electromyograms (EMG) in real-time. The proposed method is based on previouslypublished Convolution Kernel Compensation (CKC) technique and sharesthe same decomposition paradigm, i.e. compensation of motor unit action potentials and direct identification of motor unit (MU) discharges. In contrast to previously published version of CKC, which operates in batch mode and requires ~ 10 s of EMG signal, the real-time implementation begins with batch processing of ~ 3 s of the EMG signal in the initialization stage and continues on with iterative updating of the estimators of MU discharges as blocks of new EMG samples become available. Its detailed comparison to previously validated batch version of CKC and asymptotically Bayesian optimal Linear Minimum Mean Square Error (LMMSE) estimator demonstrates high agreementin identified MU discharges among all three techniques. In the case of synthetic surface EMG with 20 dB signal-to-noise ratio, MU discharges were identified with average sensitivity of 98 %. In the case of experimental EMG, real-time CKC fully converged after initial 5 s of EMG recordings and real-time and batch CKC agreed on 90 % of MU discharges, on average. The real-time CKC identified slightly fewer MUs than its batch version (experimental EMG, 4 MUs versus 5 MUs identified by batch CKC, on average), but required only 0.6 s of processing time on regular personal computer for each second of multichannel surface EMG
    corecore