7 research outputs found

    Resolving the Ripples (and a Mine): High-Resolution Multibeam Survey of Martha\u27s Vineyard ONR Mine Burial Program Field Area

    Get PDF
    In an effort to better understand the coastal processes responsible for the burial and exposure of small objects on the seafloor, the Office of Naval Research is sponsoring the Mine Burial Program. Among the field areas chosen for this program is the site of the Martha\u27s Vineyard Coastal Observatory (MVCO), a permanent instrumented node in 12 m of water about 500 m off the southern shore of Martha?s Vineyard. In support of the ONR program, several site surveys of the MVCO area have been conducted (see Goff et al); here we report the result of the most recent of these surveys, a very high-resolution multibeam survey aimed at establishing a detailed base map for the region and providing a baseline from which subsequent surveys can measure seafloor change In late July we conducted a five day survey of an approximately 3 x 5 km area surrounding the MVCO node using a Reson 8125 focused multibeam sonar aboard the SAIC survey vessel Ocean Explorer. The 8125 is a newly developed multibeam sonar that operates at 455 kHz and uses dynamic focusing to compensate for the curvature of the wavefront in the near-field. By using a relatively long array, the system can achieve very high spatial resolution (0.5 degree beam width) and with the dynamic focusing, can operate in the near field. The real constraint on resolution using this system is the ability to position the soundings and thus three kinematic DGPS base stations were established on Martha?s Vineyard and three kinematic receivers were used on the survey vessel. The kinematic GPS positioning is also critical to the ability to do repeat surveys with an accuracy high enough to resolve small (less than 10 cm) seafloor changes. Also to aid in our ability to accurately position repeat surveys, divers jetted sonar reflectors into the seafloor to act as fiducials. A super high-resolution (4 m overlap) survey was conducted in a small area surrounding the MVCO node and mine burial sites, a slightly lower resolution survey (12 to 25 m overlap) in a box approximately 1 x 1 km surrounding the ?target box? and a lower resolution survey (25 to 40 m line overlap) in a 3 x 5 km region surrounding the 1 x 1 km box. The Reson 8125 produced approximately 1 gigabyte of data per hour. The bathymetric resolution we were able to achieve was beyond our expectations. The node site and all diver-emplaced reflectors were clearly identified Most amazingly, we are able to resolve fields of individual ripples that are less than 2 cm height. Of particular relevance to the mine burial program was our ability to resolve an instrumented mine that had been deployed earlier by NRL. This mine is buried in a scour depression and is only a few centimeters proud above the base of the depression

    New Technology for Shallow Water Hydrographic Surveys

    Get PDF
    The United States Office of Coast Survey is developing technology for shallow water hydrographic surveys in order to increase the efficiency with which hydrographic data are acquired and to improve the likelihood that all potential dangers to navigation are detected in the course of a hydrographic survey. Three areas of technology hold the greatest promise for meeting those goals: Airborne Lidar Hydrography (ALH), Shallow Water Multibeam Sonars (SWMB), and digital side scan sonar, especially the Coast Survey’s new High Speed, High Resolution Side Scan Sonar (HSHRSSS). The Coast Survey expects that all its ALH surveys will be outsourced to private sector contractors, and that its SWMB and side scan sonar surveys will be accomplished by both NOAA survey vessels and by private sector contractors. This diversity of sources for survey data influences the strategy for managing these new technologies

    High-resolution mapping of mines and ripples at the Martha's Vineyard Coastal Observatory

    Get PDF
    Author Posting. © IEEE, 2007. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 32 (2007): 133-149, doi:10.1109/JOE.2007.890953.High-resolution multibeam sonar and state-of-the- art data processing and visualization techniques have been used to quantify the evolution of seafloor morphology and the degree of burial of instrumented mines and mine-shapes as part of the U.S. Office of Naval Research (ONR, Arlington, VA) mine burial experiment at the Martha's Vineyard Coastal Observatory (MVCO, Edgartown, MA). Four surveys were conducted over two years at the experiment site with a 455-kHz, Reson 8125 dynamically focused multibeam sonar. The region is characterized by shore-perpendicular alternating zones of coarse-grained sand with 5?25-cm-high, wave orbital-scale ripples, and zones of finer grained sands with smaller (2?5-cm-high) anorbital ripples and, on occasion, medium scale 10?20-cm-high, chaotic or hummocky bedforms. The boundaries between the zones appear to respond over periods of days to months to the predominant wave direction and energy. Smoothing and small shifts of the boundaries to the northeast take place during fair-weather wave conditions while erosion (scalloping of the boundary) and shifts to the north-northwest occur during storm conditions. The multibeam sonar was also able to resolve changes in the orientation and height of fields of ripples that were directly related to the differences in the prevailing wave direction and energy. The alignment of the small scale bedforms with the prevailing wave conditions appears to occur rapidly (on the order of hours or days) when the wave conditions exceed the threshold of sediment motion (most of the time for the fine sands) and particularly during moderate storm conditions. During storm events, erosional ?windows? to the coarse layer below appear in the fine-grained sands. These ?window? features are oriented parallel to the prevailing wave direction and reveal orbital-scale ripples that are oriented perpendicular to the prevailing wave direction. The resolution of the multibeam sonar combined with 3-D visualization techniques provided realistic looking images of both both instrumented and noninstrumented mines and mine-like objects (including bomb, Manta, and Rockan shapes) that were dimensionally correct and enabled unambiguous identification of the mine type. In two of the surveys (October and December 2004), the mines in the fine-grained sands scoured into local pits but were still perfectly visible and identifiable with the multibeam sonar. In the April 2004 survey, the mines were not visible and apparently were completely buried. In the coarse-grained sand zone, the mines were extremely difficult to detect after initial scour burial as the mines bury until they present the same hydrodynamic roughness as the orbital-scale bedforms and thus blend into the ambient ripple field. Given the relatively large, 3-D, spatial coverage of the multibeam sonar along with its ability to measure the depth of the seafloor and the depth and dimensions of the mine, it is possible to measure directly, the burial by depth and burial by surface area of the mines. The 3-D nature of the multibeam sonar data also allows the direct determination of the volume of material removed from a scour pit.The work of L. A. Mayer, R. Raymond, G. Glang, P. Traykovski, and A. C. Trembanis was supported by the U.S. Office of Naval Research (ONR) under the Grants N00014-01-1-0847, N00014-01-10564, and N00014-03-1-0298. The work of M. D. Richardson was supported by the U.S. Office of Naval Research (NRL) under the Core funding. The work of L. A. Mayer, R. Raymond, and G. Gland was also supported by the National Oceanic and Atmospheric Administration (NOAA) under the Grant NA17OG2285

    Electronic Chart of the Future: The Hampton Roads Project

    Get PDF
    ECDIS is evolving from a two-dimensional static display of chart-related data to a decision support system capable of providing real-time or forecast information. While there may not be consensus on how this will occur, it is clear that to do this, ENC data and the shipboard display environment must incorporate both depth and time in an intuitively understandable way. Currently, we have the ability to conduct high-density hydrographic surveys capable of producing ENCs with decimeter contour intervals or depth areas. Yet, our existing systems and specifications do not provide for a full utilization of this capability. Ideally, a mariner should be able to benefit from detailed hydrographic data, coupled with both forecast and real-time water levels, and presented in a variety of perspectives. With this information mariners will be able to plan and carry out transits with the benefit of precisely determined and easily perceived underkeel, overhead, and lateral clearances. This paper describes a Hampton Roads Demonstration Project to investigate the challenges and opportunities of developing the “Electronic Chart of the Future.” In particular, a three-phase demonstration project is being planned: 1. Compile test datasets from existing and new hydrographic surveys using advanced data processing and compilation procedures developed at the University of New Hampshire’s Center for Coastal and Ocean Mapping/Joint Hydrographic Center (CCOM/JHC); 2. Investigate innovative approaches being developed at the CCOM/JHC to produce an interactive time- and tide-aware navigation display, and to evaluate such a display on commercial and/or government vessels; 3. Integrate real-time/forecast water depth information and port information services transmitted via an AIS communications broadcast

    Maintaining Intra-line Details in a Multi-line DEM

    No full text

    High-Resolution Mapping of Mines and Ripples at the Martha\u27s Vineyard Coastal Observatory

    No full text
    High-resolution multibeam sonar and state-of-theart data processing and visualization techniques have been used to quantify the evolution of seafloor morphology and the degree of burial of instrumented mines and mine-shapes as part of the U.S. Office of Naval Research (ONR, Arlington, VA) mine burial experiment at the Martha’s Vineyard Coastal Observatory (MVCO, Edgartown, MA). Four surveys were conducted over two years at the experiment site with a 455-kHz, Reson 8125 dynamically focused multibeam sonar. The region is characterized by shore-perpendicular alternating zones of coarse-grained sand with 5–25-cm-high, wave orbital-scale ripples, and zones of finer grained sands with smaller (2–5-cm-high) anorbital ripples and, on occasion, medium scale 10–20-cm-high, chaotic or hummocky bedforms. The boundaries between the zones appear to respond over periods of days to months to the predominant wave direction and energy. Smoothing and small shifts of the boundaries to the northeast take place during fair-weather wave conditions while erosion (scalloping of the boundary) and shifts to the north-northwest occur during storm conditions. The multibeam sonar was also able to resolve changes in the orientation and height of fields of ripples that were directly related to the differences in the prevailing wave direction and energy. The alignment of the small scale bedforms with the prevailing wave conditions appears to occur rapidly (on the order of hours or days) when the wave conditions exceed the threshold of sediment motion (most of the time for the fine sands) and particularly during moderate storm conditions. During storm events, erosional “windows” to the coarse layer below appear in the fine-grained sands. These “window” features are oriented parallel to the prevailing wave direction and reveal orbital-scale ripples that are oriented perpendicular to the prevailing wave direction. The resolution of the multibeam sonar combined with 3-D visualization techniques provided realistic looking images of both instrumented and noninstrumented mines and mine-like objects (including bomb, Manta, and Rockan shapes) that were dimensionally correct and enabled unambiguous identification of the mine type. In two of the surveys (October and December 2004), the mines in the fine-grained sands scoured into local pits but were still perfectly visible and identifiable with the multibeam sonar. In the April 2004 survey, the mines were not visible and apparently were completely buried. In the coarse-grained sand zone, the mines were extremely difficult to detect after initial scour burial as the mines bury until they present the same hydrodynamic roughness as the orbital-scale bedforms and thus blend into the ambient ripple field. Given the relatively large, 3-D, spatial coverage of the multibeam sonar along with its ability to measure the depth of the seafloor and the depth and dimensions of the mine, it is possible to measure directly, the burial by depth and burial by surface area of the mines. The 3-D nature of the multibeam sonar data also allows the direct determination of the volume of material removed from a scour pi
    corecore