43 research outputs found

    Continuum representation of nonlinear three-dimensional periodic truss networks by on-the-fly homogenization

    No full text
    Thanks to scale-bridging fabrication techniques, truss-based metamaterials have gained both popularity and complexity, ultimately resulting in structural networks whose description based on classical discrete numerical calculations becomes intractable. We here present a framework for the efficient and accurate simulation of large periodic three-dimensional (3D) truss networks undergoing nonlinear deformation (accounting for linear elastic beams undergoing finite rotations). Although the focus is on elastic beams, the method is sufficiently general to extend to inelastic material behavior. Our approach is based on a continuum representation of the truss (and its numerical implementation via finite elements) whose constitutive behavior is obtained from on-the-fly periodic homogenization at the microstructural unit cell level. We pursue a semi-analytical strategy (previously reported only in two dimensions) which admits the analytical calculation of consistent tangents for convergent implicit solution schemes; the extension to 3D – through the addition of torsional deformation modes and the handling of 3D rotations – results in a powerful tool for the prediction of the complex mechanical response of large structural networks. We validate the small-strain response by comparison to analytical solutions, followed by finite-strain benchmarks that compare simulation results to those of fully-resolved discrete calculations. The homogenization of beam unit cells results in a regularized macroscale model with an intrinsic length scale, which manifests especially when modeling bifurcations or localization. We finally apply our approach to macroscopic boundary value problems involving complex-shaped truss metamaterials (with truss unit cells near the body's boundary mapped onto a conformal surface), which reveal only an insignificant effect of boundary layers on the overall mechanical response, again supporting the applicability of our homogenization approach.ISSN:0020-7683ISSN:1879-214

    Human perception of color differences using computer vision system measurements of raw pork loin

    No full text
    In the food industry, product color plays an important role in influencing consumer choices. Yet, there remains little research on the human ability to perceive differences in product color; therefore, preference testing is subjective rather than based on quantitative colors. Using a de-centralized computer-aided systematic discrimination testing method, we ascertain consumers' ability to discern between systematically varied colors. As a case study, the colors represent the color variability of fresh pork as measured by a computer vision system. Our results indicate that a total color difference (ΔE) of approximately 1 is discriminable by consumers. Furthermore, we ascertain that a change in color along the b*-axis (yellowness) in CIELAB color space is most discernable, followed by the a*-axis (redness) and then the L*-axis (lightness). As developed, our web-based discrimination testing approach allows for large scale evaluation of human color perception, while these quantitative findings on meat color discrimination are of value for future research on consumer preferences of meat color and beyond

    Proteome analysis of the effects of all-trans retinoic acid on human germ cell tumor cell lines

    Full text link
    We analysed the effects of all-trans retinoic acid (ATRA) on proliferation and changes in the global proteome of the nullipotent human embryonal carcinoma cell line 2102Ep and the pluripotent cell line NTERA2 cl.D1 (NT2). Differentially expressed proteins were assessed by 2D-PAGE and mass spectrometry, followed by verification and analysis of protein modifications of proteins of the retinoid pathway. We established a proteome map of the germ cell tumor (GCT) cell line NT2 showing neuronal differentiation under ATRA treatment for 7days. Using bioinformatic analyses, we identified functional groups of altered proteins and potentially involved pathways, of which changes to the organization of the cytoskeleton and anti-apoptotic effects were the most prominent. Changes observed in the expression of factors involved in the retinoid pathway under ATRA, namely an upregulation of CRBP and CRABP2, were also reflected in GCT tissues of different histologies, providing further insight into factors involved in the differentiation of these pluripotent tumors. BIOLOGICAL SIGNIFICANCE: Treatment of NT2 germ cell tumor cells with all-trans retinoic acid (ATRA) is a model to investigate differentiation. We analysed differentially expressed proteins by 2D-PAGE and mass spectrometry and provide a proteome map of NT2 cells under 7days of ATRA. By bioinformatic analyses, functional groups of proteins and involved pathways like changes to the cytoskeleton and anti-apoptotic effects were identified. Factors involved in the retinoid pathway, in particular upregulation of CRBP, CRABP1 and CRABP2, also showed differential expression in tumors with different histological subtypes, which provides insight into gene regulation under induced and spontaneous differentiation in germ cell tumors
    corecore