132 research outputs found

    Pencil-Beam Surveys for Faint Trans-Neptunian Objects

    Get PDF
    We have conducted pencil-beam searches for outer solar system objects to a limiting magnitude of R ~ 26. Five new trans-neptunian objects were detected in these searches. Our combined data set provides an estimate of ~90 trans-neptunian objects per square degree brighter than ~ 25.9. This estimate is a factor of 3 above the expected number of objects based on an extrapolation of previous surveys with brighter limits, and appears consistent with the hypothesis of a single power-law luminosity function for the entire trans-neptunian region. Maximum likelihood fits to all self-consistent published surveys with published efficiency functions predicts a cumulative sky density Sigma(<R) obeying log10(Sigma) = 0.76(R-23.4) objects per square degree brighter than a given magnitude R.Comment: Accepted by AJ, 18 pages, including 6 figure

    Constraints on the Orbital Evolution of Triton

    Full text link
    We present simulations of Triton's post-capture orbit that confirm the importance of Kozai-type oscillations in its orbital elements. In the context of the tidal orbital evolution model, these variations require average pericenter distances much higher than previously published, and the timescale for the tidal orbital evolution of Triton becomes longer than the age of the Solar System. Recently-discovered irregular satellites present a new constraint on Triton's orbital history. Our numerical integrations of test particles indicate a timescale for Triton's orbital evolution to be less than 10510^5 yrs for a reasonable number of distant satellites to survive Triton's passage. This timescale is inconsistent with the exclusively tidal evolution (time scale of >108>10^8 yrs), but consistent with the interestion with the debris from satellite-satellite collisions. Any major regular satellites will quickly collide among themselves after being perturbed by Triton, and the resulting debris disk would eventually be swept up by Triton; given that the total mass of the Uranian satellite system is 40% of that of Triton, large scale evolution is possible. This scenario could have followed either collisional or the recently-discussed three-body-interaction-based capture.Comment: 10 pages, 4 figures, accepted for ApJ

    Photometric Survey of the Irregular Satellites

    Get PDF
    We present BVRI colors of 13 Jovian and 8 Saturnian irregular satellites obtained with the 2.56m Nordic Optical Telescope on La Palma, the 6.5m Magellan Baade Telescope on La Campanas, and the 6m MMT on Mt. Hopkins. The observations were performed between December 2001 to March 2002. Nearly all of the known irregular satellites can be divided into two distinct classes based on their colors. One, the grey color class, has the similar colors to the C-type asteroid, and the other, the light red color class, has colors similar to P/D-type asteroids. We also find at least one object, the Jovian irregular J XXIII Kalyke, that has colors similar to the red colored Centaurs/TNOs, although its classification is unsecure. We also find that there is a correlation between the physical properties and dynamical properties of the irregular satellites. Most of the dynamical clusters have homogeneous colors, which points to single homogeneous progenitors being cratered or fragmented as the source of each individual cluster. The heterogeneous colored clusters are most easily explained by assuming that there are several dynamical clusters in the area, rather than just one.Comment: Submitted to Icarus, 43 pages including 5 figure

    OSSOS. XXIX. The Population and Perihelion Distribution of the Detached Kuiper Belt

    Full text link
    The detached transneptunian objects (TNOs) are those with semimajor axes beyond the 2:1 resonance with Neptune, which are neither resonant nor scattering. Using the detached sample from the OSSOS telescopic survey, we produce the first studies of their orbital distribution based on matching the orbits and numbers of the known TNOs after accounting for survey biases. We show that the detached TNO perihelion (qq) distribution cannot be uniform, but is instead better matched by two uniform components with a break near q40q\approx40 au. We produce parametric two-component models that are not rejectable by the OSSOS data set, and estimate that there are 36, ⁣0009,000+12,00036,\!000^{+12,000}_{-9,000} detached TNOs with absolute magnitudes Hr<8.66H_r < 8.66 (D100D \gtrsim 100 km) and semimajor axes 48<a<25048 < a < 250 au (95% confidence limits). Although we believe these heuristic two-parameter models yield a correct population estimate, we then use the same methods to show that the perihelion distribution of a detached disk created by a simulated rogue planet matches the qq distribution even better, suggesting that the temporary presence of other planets in the early Solar System is a promising model to create today's large semimajor axis TNO population. This numerical model results in a detached TNO population estimate of 48, ⁣00012,000+15,00048,\!000^{+15,000}_{-12,000}. Because this illustrates how difficult-to-detect q>50q>50 au objects are likely present, we conclude that there are (5±2)×104(5 \pm 2)\times10^4 dynamically detached TNOs, which are thus roughly twice as numerous as the entire transneptunian hot main belt.Comment: Accepted for publication in The Planetary Science Journal. 16 pages, 8 figure

    A search for transits of GJ 581\lowercase{e} and characterization of the host star variability using MOST space telescope photometry

    Get PDF
    The GJ 581 system has been amply studied since its discovery in 2005: the number of known planets in the system has increased and their orbital parameters are among the most precisely determined for radial velocity detected exoplanets. We have acquired MOST space-based photometry during 2007 and 2009, with the aims of measuring the stellar variability and searching for transits of GJ 581e, respectively. We quantify our sensitivity to shallow transit signals using Monte Carlo simulations, and perform a transit search within the 3σ\sigma transit windows corresponding to both the circular and Keplerian orbit ephemerides. Our analysis rules out transits for a planet with an orbital period of 3.15 days (GJ 581 e) having a radius larger than 1.62 RR_{\oplus} (or a density lower than 2.39 g cm3^{-3} for an orbital inclination of 90^{\circ}) to 2σ\sigma confidence. Thus, if the planet transits, we can exclude hydrogen, helium and water theoretical model compositions. The MOST photometry also allows us to rule out transits of GJ 581b within the Keplerian orbit-derived transit window for impact parameter values smaller than \sim0.4 and confirm previous results which exclude transits for this planet within the circular orbit-derived transit window, for all plausible interior compositions. We find that the stellar brightness of GJ 581 is stable to within 1%, a characteristic which is favourable to the development of life in the habitable zone of the system. In the 2009 photometry, we detect a stellar signal with a period of 5.586 ±\pm 0.051 days, which is close to the orbital period of GJ 581b (P=P=5.37 days). However, further monitoring of the system is necessary to verify the nature of this variation.Comment: 11 pages, 2 tables, 10 figures; accepted for publication in Ap
    corecore