460 research outputs found

    Modeling a Sensor to Improve its Efficacy

    Get PDF
    Robots rely on sensors to provide them with information about their surroundings. However, high-quality sensors can be extremely expensive and cost-prohibitive. Thus many robotic systems must make due with lower-quality sensors. Here we demonstrate via a case study how modeling a sensor can improve its efficacy when employed within a Bayesian inferential framework. As a test bed we employ a robotic arm that is designed to autonomously take its own measurements using an inexpensive LEGO light sensor to estimate the position and radius of a white circle on a black field. The light sensor integrates the light arriving from a spatially distributed region within its field of view weighted by its Spatial Sensitivity Function (SSF). We demonstrate that by incorporating an accurate model of the light sensor SSF into the likelihood function of a Bayesian inference engine, an autonomous system can make improved inferences about its surroundings. The method presented here is data-based, fairly general, and made with plug-and play in mind so that it could be implemented in similar problems.Comment: 18 pages, 8 figures, submitted to the special issue of "Sensors for Robotics

    Modelling of the rolling process of titanium alloy tube billets in laboratory conditions on a RSP 14-40 rolling mill

    Get PDF
    The development of screw rolling technology for the production of hot-deformed tubes over Ø250 mm on a SVP-500 rolling mill faces a number of challenges that influence the quality of tubes, such as: the screw trace formed on the external surface of tubes and bending of tubes that makes impossible subsequent manufacturing operations. The following experimental and laboratory research was performed to solve these problems: a number of experimental tube billets with and without mandrels were rolled to various strains on a RSP 14-40 laboratory rolling mill to obtain the best ratio of wall thickness to the external diamete

    A randomized phase II study of lapatinib + pazopanib versus lapatinib in patients with HER2+ inflammatory breast cancer

    Get PDF
    This multi-center Phase II study evaluated lapatinib, pazopanib, and the combination in patients with relapsed HER2+ inflammatory breast cancer. In Cohort 1, 76 patients were randomized 1:1 to receive lapatinib 1,500 mg + placebo or lapatinib 1,500 mg + pazopanib 800 mg (double-blind) once daily until disease progression, unacceptable toxicity, or death. Due to high-grade diarrhea observed with this dose combination in another study (VEG20007), Cohort 1 was closed. The protocol was amended such that an additional 88 patients (Cohort 2) were randomized in a 5:5:2 ratio to receive daily monotherapy lapatinib 1,500 mg, lapatinib 1,000 mg + pazopanib 400 mg, or monotherapy pazopanib 800 mg, respectively. The primary endpoint was overall response rate (ORR). Secondary endpoints included duration of response, progression-free survival (PFS), overall survival, and safety. In Cohort 1, ORR for the lapatinib (n = 38) and combination (n = 38) arms was 29 and 45 %, respectively; median PFS was 16.1 and 14.3 weeks, respectively. Grade ≄3 adverse events (AEs) were more frequent in the combination arm (71 %) than in the lapatinib arm (24 %). Dose reductions and interruptions due to AEs were also more frequent in the combination arm (45 and 53 %, respectively) than in the lapatinib monotherapy arm (0 and 11 %, respectively). In Cohort 2, ORR for patients treated with lapatinib (n = 36), lapatinib + pazopanib (n = 38), and pazopanib (n = 13) was 47, 58, and 31 %, respectively; median PFS was 16.0, 16.0, and 11.4 weeks, respectively. In the lapatinib, combination, and pazopanib therapy arms, grade ≄3 AEs were reported for 17, 50, and 46 % of patients, respectively, and the incidence of discontinuations due to AEs was 0, 24, and 23 %, respectively. The lapatinib–pazopanib combination was associated with a numerically higher ORR but no increase in PFS compared to lapatinib alone. The combination also had increased toxicity resulting in more dose reductions, modifications, and treatment delays. Activity with single-agent lapatinib was confirmed in this population

    ĐąŃ€Đ”Ń…ĐŒĐ”Ń€ĐœŃ‹Đ” струĐșŃ‚ŃƒŃ€ĐœĐŸâ€ĐČДщДстĐČĐ”ĐœĐœŃ‹Đ” ĐŒĐŸĐŽĐ”Đ»Đž Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžŃ ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČых Ń‚Ń€ŃƒĐ±ĐŸĐș ĐŃŽŃ€Đ±ĐžĐœŃĐșĐŸĐč Đž Đ‘ĐŸŃ‚ŃƒĐŸĐ±ĐžĐœŃĐșĐŸĐč (ĐŻĐșутсĐșая Đ°Đ»ĐŒĐ°Đ·ĐŸĐœĐŸŃĐœĐ°Ń ĐżŃ€ĐŸĐČĐžĐœŃ†ĐžŃ)

    Get PDF
    The Nyurbinskaya and Botuobinskaya kimberlitic pipes were in the focus of a comprehensive study aimed to investigate their structural and material positions as the main deposits in the Nakyn field (Yakutian Diamondife‐ rous Province, Russia). This paper present the study results and 3D structural‐material models showing the formation of these deposits. In application to geological studies, the 3D modeling technologies allow taking into account the ani‐ sotropy of material complexes comprising kimberlite pipes, as well as inconsistencies in the structural and morpho‐ logical properties of ore‐bearing structures. In order to discover the structural positions and features of the fault‐ block structures of the deposits, tectonophysical methods were used in combination with tacheometric surveys. Based on this more comprehensive and integrated approach, the existing fault patterns were clarified in detail; elements of the internal fault structure were mapped; fault azimuths and dip angles were estimated; and thickness values were obtained. Computer processed data were used to construct 3D models showing the fault‐block structures of the Nyurbinskaya and Botuobinskaya pipes. The mineralogical, petrographic and diamond‐bearing features of various kimberlite generations comprising these pipes were investigated in order to reconstruct the morphology and spatial positions of each of the selected complexes in the current cross‐section and in accordance with intrusion phases. The 3D frame models of geological bodies were constructed for all the magmatic phases, including porphyry kimberlite and eruptive and autolithic kimberlite breccia. The structural‐material models for the Nyurbinskaya and Botuobin‐ skaya pipes were based on a synthesis of their material and structural features discovered in the previous stages of the study. The models presented in this paper are used to discuss temporal relationships between faults in the kim‐ berlitic structure and material complexes comprising the pipes. The models show that the pipes occurred in the near‐ surface structures of shear tension, which developed in the areas where the NNE‐striking fault was conjugated with the ENE‐ and NE‐striking faults in the fault zone resulting from several stage of the tectono‐magmatic activity. In this case, the kimberlite melt material was transported in discrete portions from the source through deep‐seated faults, and the faults acted as channels characterized by an increased permeability. Disjunctive elements identified in this study facilitated magma movements and localization of kimberlite bodies.В Ń€Đ°Đ±ĐŸŃ‚Đ” прДЎстаĐČĐ»Đ”ĐœŃ‹ Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ ĐșĐŸĐŒĐżĐ»Đ”ĐșŃĐœĐŸĐłĐŸ ĐżĐŸĐŽŃ…ĐŸĐŽĐ° Đș ĐžĐ·ŃƒŃ‡Đ”ĐœĐžŃŽ струĐșŃ‚ŃƒŃ€ĐœĐŸĐč Đž ĐČДщДстĐČĐ”ĐœĐœĐŸĐč ĐżĐŸĐ·ĐžŃ†ĐžĐž ĐșĐŸŃ€Đ”ĐœĐœŃ‹Ń… ĐŒĐ”ŃŃ‚ĐŸŃ€ĐŸĐ¶ĐŽĐ”ĐœĐžĐč НаĐșŃ‹ĐœŃĐșĐŸĐłĐŸ ĐżĐŸĐ»Ń – ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČых Ń‚Ń€ŃƒĐ±ĐŸĐș ĐŃŽŃ€Đ±ĐžĐœŃĐșĐŸĐč Đž Đ‘ĐŸŃ‚ŃƒĐŸĐ±ĐžĐœŃĐșĐŸĐč, Ń‡Ń‚ĐŸ ĐœĐ°ŃˆĐ»ĐŸ ĐŸŃ‚Ń€Đ°Đ¶Đ”ĐœĐžĐ” ĐČ Ń‚Ń€Đ”Ń…ĐŒĐ”Ń€ĐœŃ‹Ń… струĐșŃ‚ŃƒŃ€ĐœĐŸâ€ĐČДщДстĐČĐ”ĐœĐœŃ‹Ń… ĐŒĐŸĐŽĐ”Đ»ŃŃ… ох Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžŃ. Đ˜ŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°ĐœĐžĐ” ĐŸĐ±ŃŠĐ”ĐŒĐœĐŸĐłĐŸ ĐŒĐŸĐŽĐ”Đ»ĐžŃ€ĐŸĐČĐ°ĐœĐžŃ ĐșĐ°Đș ĐŸĐŽĐœĐŸĐłĐŸ Оз ĐœĐ°ĐžĐ±ĐŸĐ»Đ”Đ” ĐżŃ€ĐŸĐłŃ€Đ”ŃŃĐžĐČĐœŃ‹Ń… ĐŒĐ”Ń‚ĐŸĐŽĐŸĐČ ĐłĐ”ĐŸĐ»ĐŸĐłĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ ĐżĐŸĐ·ĐœĐ°ĐœĐžŃ ĐżĐŸĐ·ĐČĐŸĐ»ĐžĐ»ĐŸ ŃƒŃ‡Đ”ŃŃ‚ŃŒ ĐČŃ‹ŃĐŸĐșую ŃŃ‚Đ”ĐżĐ”ĐœŃŒ ĐžĐ·ĐŒĐ”ĐœŃ‡ĐžĐČĐŸŃŃ‚Đž (Đ°ĐœĐžĐ·ĐŸŃ‚Ń€ĐŸĐżĐžĐž) ĐČДщДстĐČĐ”ĐœĐœŃ‹Ń… ĐșĐŸĐŒĐżĐ»Đ”ĐșŃĐŸĐČ, слагающОх ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČŃ‹Đ” Ń‚Ń€ŃƒĐ±ĐșĐž, Đ° таĐșжД ĐœĐ”ĐČŃ‹ĐŽĐ”Ń€Đ¶Đ°ĐœĐœĐŸŃŃ‚ŃŒ струĐșŃ‚ŃƒŃ€ĐœĐŸâ€ĐŒĐŸŃ€Ń„ĐŸĐ»ĐŸĐłĐžŃ‡Đ”ŃĐșох сĐČĐŸĐčстĐČ Ń€ŃƒĐŽĐŸĐČĐŒĐ”Ń‰Đ°ŃŽŃ‰Đ”Đč струĐșтуры. Đ Đ”ŃˆĐ”ĐœĐžĐ” заЎач, сĐČŃĐ·Đ°ĐœĐœŃ‹Ń… с ĐŸĐżŃ€Đ”ĐŽĐ”Đ»Đ”ĐœĐžĐ”ĐŒ струĐșŃ‚ŃƒŃ€ĐœĐŸĐč ĐżĐŸĐ·ĐžŃ†ĐžĐž Đž ĐŸŃĐŸĐ±Đ”ĐœĐœĐŸŃŃ‚Đ”Đč Ń€Đ°Đ·Đ»ĐŸĐŒĐœĐŸâ€Đ±Đ»ĐŸĐșĐŸĐČĐŸĐłĐŸ ŃŃ‚Ń€ĐŸĐ”ĐœĐžŃ Ń€Đ°ŃŃĐŒĐ°Ń‚Ń€ĐžĐČĐ°Đ”ĐŒŃ‹Ń… ĐŒĐ”ŃŃ‚ĐŸŃ€ĐŸĐ¶ĐŽĐ”ĐœĐžĐč, ĐŸŃŃƒŃ‰Đ”ŃŃ‚ĐČĐ»ŃĐ»ĐŸŃŃŒ ĐżŃƒŃ‚Đ”ĐŒ ĐżŃ€ĐžĐŒĐ”ĐœĐ”ĐœĐžŃ Ń‚Đ”ĐșŃ‚ĐŸĐœĐŸŃ„ĐžĐ·ĐžŃ‡Đ”ŃĐșох ĐŒĐ”Ń‚ĐŸĐŽĐŸĐČ ĐČ ŃĐŸŃ‡Đ”Ń‚Đ°ĐœĐžĐž с ĐŒĐ”Ń‚ĐŸĐŽĐ°ĐŒĐž Ń‚Đ°Ń…Đ”ĐŸĐŒĐ”Ń‚Ń€ĐžŃ‡Đ”ŃĐșĐŸĐč ŃŃŠĐ”ĐŒĐșĐž. ĐĄ ох ĐżĐŸĐŒĐŸŃ‰ŃŒŃŽ Đ·ĐœĐ°Ń‡ĐžŃ‚Đ”Đ»ŃŒĐœĐŸ ĐŽĐ”Ń‚Đ°Đ»ĐžĐ·ĐžŃ€ĐŸĐČĐ°ĐœŃ‹ ŃŃƒŃ‰Đ”ŃŃ‚ĐČŃƒŃŽŃ‰ĐžĐ” ŃŃ…Đ”ĐŒŃ‹ Ń€Đ°Đ·Đ»ĐŸĐŒĐœĐŸĐłĐŸ ŃŃ‚Ń€ĐŸĐ”ĐœĐžŃ участĐșĐŸĐČ, ĐŸŃ‚ĐșĐ°Ń€Ń‚ĐžŃ€ĐŸĐČĐ°ĐœŃ‹ ŃĐ»Đ”ĐŒĐ”ĐœŃ‚Ń‹ ĐČĐœŃƒŃ‚Ń€Đ”ĐœĐœĐ”Đč струĐșтуры Ń€Đ°Đ·Đ»ĐŸĐŒĐŸĐČ, ĐŸĐżŃ€Đ”ĐŽĐ”Đ»Đ”ĐœŃ‹ Đ°Đ·ĐžĐŒŃƒŃ‚Ń‹ Đž ŃƒĐłĐ»Ń‹ ĐżĐ°ĐŽĐ”ĐœĐžŃ ĐœĐ°Ń€ŃƒŃˆĐ”ĐœĐžĐč, ŃƒŃŃ‚Đ°ĐœĐŸĐČĐ»Đ”ĐœĐ° ох ĐŒĐŸŃ‰ĐœĐŸŃŃ‚ŃŒ. ĐŸĐŸ Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Đ°ĐŒ ĐșĐŸĐŒĐżŃŒŃŽŃ‚Đ”Ń€ĐœĐŸĐč ĐŸĐ±Ń€Đ°Đ±ĐŸŃ‚ĐșĐž ĐŒĐ°Ń‚Đ”Ń€ĐžĐ°Đ»ĐŸĐČ ĐżĐŸŃŃ‚Ń€ĐŸĐ”ĐœŃ‹ Ń‚Ń€Đ”Ń…ĐŒĐ”Ń€ĐœŃ‹Đ” ĐŒĐŸĐŽĐ”Đ»Đž Ń€Đ°Đ·Đ»ĐŸĐŒĐœĐŸâ€Đ±Đ»ĐŸĐșĐŸĐČĐŸĐłĐŸ ŃŃ‚Ń€ĐŸĐ”ĐœĐžŃ участĐșĐŸĐČ Đ»ĐŸĐșалОзацОО Ń‚Ń€ŃƒĐ±ĐŸĐș ĐŃŽŃ€Đ±ĐžĐœŃĐșĐŸĐč Đž Đ‘ĐŸŃ‚ŃƒĐŸĐ±ĐžĐœŃĐșĐŸĐč. Đ˜ŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃ ĐŒĐžĐœĐ”Ń€Đ°Đ»ĐŸĐłĐŸâ€ĐżĐ”Ń‚Ń€ĐŸĐłŃ€Đ°Ń„ĐžŃ‡Đ”ŃĐșох ĐŸŃĐŸĐ±Đ”ĐœĐœĐŸŃŃ‚Đ”Đč Đž спДцОфОĐșĐž Đ°Đ»ĐŒĐ°Đ·ĐŸĐœĐŸŃĐœĐŸŃŃ‚Đž Ń€Đ°Đ·Đ»ĐžŃ‡ĐœŃ‹Ń… ĐłĐ”ĐœĐ”Ń€Đ°Ń†ĐžĐč ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚Đ°, слагающОх Ń‚Ń€ŃƒĐ±ĐșĐž ĐŃŽŃ€Đ±ĐžĐœŃĐșую Đž Đ‘ĐŸŃ‚ŃƒĐŸĐ±ĐžĐœŃĐșую, ĐżĐŸĐ·ĐČĐŸĐ»ĐžĐ»Đž ĐČĐŸŃŃŃ‚Đ°ĐœĐŸĐČоть ĐŒĐŸŃ€Ń„ĐŸĐ»ĐŸĐłĐžŃŽ Đž ĐżŃ€ĐŸŃŃ‚Ń€Đ°ĐœŃŃ‚ĐČĐ”ĐœĐœĐŸĐ” ĐżĐŸĐ»ĐŸĐ¶Đ”ĐœĐžĐ” ĐșĐ°Đ¶ĐŽĐŸĐłĐŸ Оз ĐČŃ‹ĐŽĐ”Đ»Đ”ĐœĐœŃ‹Ń… ĐșĐŸĐŒĐżĐ»Đ”ĐșŃĐŸĐČ ĐșĐ°Đș ĐČ ŃĐŸĐČŃ€Đ”ĐŒĐ”ĐœĐœĐŸĐŒ срДзД, таĐș Đž ĐœĐ° ŃŃ‚Đ°ĐżĐ” ĐČĐœĐ”ĐŽŃ€Đ”ĐœĐžŃ. Đ”Đ»Ń ĐČсДх ĐŒĐ°ĐłĐŒĐ°Ń‚ĐžŃ‡Đ”ŃĐșох Ń„Đ°Đ· (ĐżĐŸŃ€Ń„ĐžŃ€ĐŸĐČыĐč ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚, эруптоĐČĐœĐ°Ń ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČая брДĐșчоя Đž Đ°ĐČŃ‚ĐŸĐ»ĐžŃ‚ĐŸĐČая ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČая брДĐșчоя) ŃĐŸĐ·ĐŽĐ°ĐœŃ‹ ĐŸĐ±ŃŠĐ”ĐŒĐœŃ‹Đ” ĐșарĐșĐ°ŃĐœŃ‹Đ” ĐŒĐŸĐŽĐ”Đ»Đž ох ĐłĐ”ĐŸĐ»ĐŸĐłĐžŃ‡Đ”ŃĐșох тДл. Đ Đ°Đ·Ń€Đ°Đ±ĐŸŃ‚ĐșĐ° струĐșŃ‚ŃƒŃ€ĐœĐŸâ€ĐČДщДстĐČĐ”ĐœĐœŃ‹Ń… ĐŒĐŸĐŽĐ”Đ»Đ”Đč ĐŽĐ»Ń Ń‚Ń€ŃƒĐ±ĐŸĐș ĐŃŽŃ€Đ±ĐžĐœŃĐșĐŸĐč Đž Đ‘ĐŸŃ‚ŃƒĐŸĐ±ĐžĐœŃĐșĐŸĐč ĐŸŃŃƒŃ‰Đ”ŃŃ‚ĐČĐ»ŃĐ»Đ°ŃŃŒ ĐżŃƒŃ‚Đ”ĐŒ ŃĐžĐœŃ‚Đ”Đ·ĐžŃ€ĐŸĐČĐ°ĐœĐžŃ ĐŽĐ°ĐœĐœŃ‹Ń… ĐŸ ĐČДщДстĐČĐ”ĐœĐœŃ‹Ń… Đž струĐșŃ‚ŃƒŃ€ĐœŃ‹Ń… ĐŸŃĐŸĐ±Đ”ĐœĐœĐŸŃŃ‚ŃŃ… ĐŒĐ”ŃŃ‚ĐŸŃ€ĐŸĐ¶ĐŽĐ”ĐœĐžĐč, ĐżĐŸĐ»ŃƒŃ‡Đ”ĐœĐœŃ‹Ń… ĐČ Ń…ĐŸĐŽĐ” ĐżŃ€Đ”ĐŽŃ‹ĐŽŃƒŃ‰ĐžŃ… ŃŃ‚Đ°ĐżĐŸĐČ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃ. В Ń€Đ°ĐŒĐșах прДЎстаĐČĐ»ŃĐ”ĐŒŃ‹Ń… ĐŒĐŸĐŽĐ”Đ»Đ”Đč ĐČĐŸ ĐČŃ€Đ”ĐŒĐ”ĐœĐœĐŸĐč ĐżĐŸŃĐ»Đ”ĐŽĐŸĐČĐ°Ń‚Đ”Đ»ŃŒĐœĐŸŃŃ‚Đž Ń€Đ°ŃŃĐŒĐŸŃ‚Ń€Đ”ĐœŃ‹ ĐżŃ€ĐŸŃ†Đ”ŃŃŃ‹ ĐČĐ·Đ°ĐžĐŒĐŸĐŽĐ”ĐčстĐČоя разрыĐČĐœŃ‹Ń… ĐœĐ°Ń€ŃƒŃˆĐ”ĐœĐžĐč, Ń„ĐŸŃ€ĐŒĐžŃ€ŃƒŃŽŃ‰ĐžŃ… ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČĐŒĐ”Ń‰Đ°ŃŽŃ‰ŃƒŃŽ струĐșтуру, Đž ĐČДщДстĐČĐ”ĐœĐœŃ‹Ń… ĐșĐŸĐŒĐżĐ»Đ”ĐșŃĐŸĐČ, слагающОх Ń‚Ń€ŃƒĐ±ĐșĐž. ĐĄĐŸĐłĐ»Đ°ŃĐœĐŸ ĐżĐŸĐ»ŃƒŃ‡Đ”ĐœĐœŃ‹ĐŒ ĐŒĐŸĐŽĐ”Đ»ŃĐŒ, Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžĐ” Ń‚Ń€ŃƒĐ±ĐŸĐș ĐżŃ€ĐŸĐžŃŃ…ĐŸĐŽĐžĐ»ĐŸ ĐČ ĐżŃ€ĐžĐżĐŸĐČĐ”Ń€Ń…ĐœĐŸŃŃ‚ĐœŃ‹Ń… струĐșтурах просЮĐČĐžĐłĐŸĐČĐŸĐłĐŸ Ń€Đ°ŃŃ‚ŃĐ¶Đ”ĐœĐžŃ, ĐŸĐ±Ń€Đ°Đ·ĐŸĐČĐ°ĐœĐœŃ‹Ń… ĐœĐ° участĐșах ŃĐŸĐżŃ€ŃĐ¶Đ”ĐœĐžŃ Ń€Đ°Đ·Đ»ĐŸĐŒĐ° сДĐČДр‐сДĐČĐ”Ń€ĐŸâ€ĐČĐŸŃŃ‚ĐŸŃ‡ĐœĐŸĐč ĐŸŃ€ĐžĐ”ĐœŃ‚ĐžŃ€ĐŸĐČĐșĐž с Ń‡Đ°ŃŃ‚ĐœŃ‹ĐŒĐž ĐŽĐžŃĐ»ĐŸĐșĐ°Ń†ĐžŃĐŒĐž Đ·ĐŸĐœŃ‹ разрыĐČĐœŃ‹Ń… ĐœĐ°Ń€ŃƒŃˆĐ”ĐœĐžĐč ĐČĐŸŃŃ‚ĐŸĐș‐сДĐČĐ”Ń€ĐŸâ€ĐČĐŸŃŃ‚ĐŸŃ‡ĐœĐŸĐłĐŸ Đž сДĐČĐ”Ń€ĐŸâ€Đ·Đ°ĐżĐ°ĐŽĐœĐŸĐłĐŸ ĐœĐ°ĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžŃ ĐČ Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Đ” ĐœĐ”ŃĐșĐŸĐ»ŃŒĐșох ŃŃ‚Đ°ĐżĐŸĐČ Ń‚Đ”ĐșŃ‚ĐŸĐœĐŸĐŒĐ°ĐłĐŒĐ°Ń‚ĐžŃ‡Đ”ŃĐșĐŸĐč Đ°ĐșтоĐČОзацОО. Про ŃŃ‚ĐŸĐŒ ĐŽĐŸŃŃ‚Đ°ĐČĐșĐ° ЎОсĐșŃ€Đ”Ń‚ĐœŃ‹Ń… ĐżĐŸŃ€Ń†ĐžĐč ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČĐŸĐłĐŸ расплаĐČĐ° ĐŸŃ‚ ĐžŃŃ‚ĐŸŃ‡ĐœĐžĐșĐ° ĐżŃ€ĐŸĐžŃŃ…ĐŸĐŽĐžĐ»Đ° ĐżĐŸ ĐłĐ»ŃƒĐ±ĐžĐœĐœŃ‹ĐŒ Ń€Đ°Đ·Đ»ĐŸĐŒĐ°ĐŒ, ĐČŃ‹ŃŃ‚ŃƒĐżĐ°ŃŽŃ‰ĐžĐŒ ĐČ ĐșачДстĐČĐ” ĐșĐ°ĐœĐ°Đ»ĐŸĐČ ĐżĐŸĐČŃ‹ŃˆĐ”ĐœĐœĐŸĐč ĐżŃ€ĐŸĐœĐžŃ†Đ°Đ”ĐŒĐŸŃŃ‚Đž. В ŃĐŸĐČĐŸĐșŃƒĐżĐœĐŸŃŃ‚Đž ĐČŃ‹ĐŽĐ”Đ»Đ”ĐœĐœŃ‹Đ” ĐŽĐžĐ·ŃŠŃŽĐœĐșтоĐČĐœŃ‹Đ” ŃĐ»Đ”ĐŒĐ”ĐœŃ‚Ń‹ прДЎстаĐČĐ»ŃŃŽŃ‚ ŃĐŸĐ±ĐŸĐč струĐșтуры, Đ±Đ»Đ°ĐłĐŸĐżŃ€ĐžŃŃ‚ĐœŃ‹Đ” ĐŽĐ»Ń ĐżĐ”Ń€Đ”ĐŒĐ”Ń‰Đ”ĐœĐžŃ ĐŒĐ°ĐłĐŒŃ‹ Đž Đ»ĐŸĐșалОзацОО ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČых тДл

    PSYCHOLOGICAL FACTORS OF SURVIVAL AND DISEASE COURSE IN WOMEN WITH BREAST CANCER: RESULTS AND PROSPECTS OF THE STUDY

    Full text link
    The article presents the results of a study of psychological factors of survival and the course of the disease in women with breast cancer. As a result of a longitudinal study, data were obtained on the relationship of psychological indicators with various variants of the course of the disease, as well as on the dynamics of personal and subjective characteristics with different outcomes of the disease. The authors have outlined further prospects for a longitudinal study on a sample of women with breast cancer with a fiveyear survival rate.В ŃŃ‚Đ°Ń‚ŃŒĐ” проĐČĐŸĐŽŃŃ‚ŃŃ Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃ ĐżŃĐžŃ…ĐŸĐ»ĐŸĐłĐžŃ‡Đ”ŃĐșох фаĐșŃ‚ĐŸŃ€ĐŸĐČ ĐČыжОĐČĐ°Đ”ĐŒĐŸŃŃ‚Đž Đž Ń‚Đ”Ń‡Đ”ĐœĐžŃ Đ±ĐŸĐ»Đ”Đ·ĐœĐž у Đ¶Đ”ĐœŃ‰ĐžĐœ с раĐșĐŸĐŒ ĐŒĐŸĐ»ĐŸŃ‡ĐœĐŸĐč жДлДзы. В Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Đ” Đ»ĐŸĐœĐłĐžŃ‚ŃŽĐŽĐœĐŸĐłĐŸ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃ ĐżĐŸĐ»ŃƒŃ‡Đ”ĐœŃ‹ ĐŽĐ°ĐœĐœŃ‹Đ” ĐŸ сĐČŃĐ·Đž ĐżŃĐžŃ…ĐŸĐ»ĐŸĐłĐžŃ‡Đ”ŃĐșох ĐżĐŸĐșазатДлДĐč с Ń€Đ°Đ·Đ»ĐžŃ‡ĐœŃ‹ĐŒĐž ĐČĐ°Ń€ĐžĐ°ĐœŃ‚Đ°ĐŒĐž Ń‚Đ”Ń‡Đ”ĐœĐžŃ Đ±ĐŸĐ»Đ”Đ·ĐœĐž, Đ° таĐșжД ĐŸ ĐŽĐžĐœĐ°ĐŒĐžĐșĐ” Đ»ĐžŃ‡ĐœĐŸŃŃ‚ĐœŃ‹Ń… Đž ŃŃƒĐ±ŃŠĐ”ĐșŃ‚ĐœŃ‹Ń… хараĐșтДрОстОĐș про Ń€Đ°Đ·Đ»ĐžŃ‡ĐœŃ‹Ń… ĐžŃŃ…ĐŸĐŽĐ°Ń… Đ±ĐŸĐ»Đ”Đ·ĐœĐž. АĐČŃ‚ĐŸŃ€Đ°ĐŒĐž ĐŸĐ±ĐŸĐ·ĐœĐ°Ń‡Đ”ĐœŃ‹ ĐŽĐ°Đ»ŃŒĐœĐ”ĐčшОД пДрспДĐșтоĐČы Đ»ĐŸĐœĐłĐžŃ‚ŃŽĐŽĐœĐŸĐłĐŸ ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžŃ ĐœĐ° ĐČŃ‹Đ±ĐŸŃ€ĐșĐ” Đ¶Đ”ĐœŃ‰ĐžĐœ с раĐșĐŸĐŒ ĐŒĐŸĐ»ĐŸŃ‡ĐœĐŸĐč жДлДзы про ĐżŃŃ‚ĐžĐ»Đ”Ń‚ĐœĐ”Đč ĐČыжОĐČĐ°Đ”ĐŒĐŸŃŃ‚Đž.Đ˜ŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐ” ĐČŃ‹ĐżĐŸĐ»ĐœĐ”ĐœĐŸ Đ·Đ° счДт ĐłŃ€Đ°ĐœŃ‚Đ° Đ ĐŸŃŃĐžĐčсĐșĐŸĐłĐŸ ĐœĐ°ŃƒŃ‡ĐœĐŸĐłĐŸ Ń„ĐŸĐœĐŽĐ° (ĐżŃ€ĐŸĐ”Đșт № 19-18-00426)

    СбРУКбУРНО-Đ’Đ•Đ©Đ•ĐĄĐąĐ’Đ•ĐĐĐĐŻ МОДЕЛЬ СбАНОВЛЕНИЯ КИМБЕРЛИбОВОЙ бРУБКИ НмРБИНСКАЯ (СРЕДНЕ-ĐœĐĐ Đ„Đ˜ĐĐĄĐšĐ˜Đ™ РАЙОН ЯКУбСКОЙ АЛМАЗОНОСНОЙ ПРОВИНЩИИ)

    Get PDF
    The paper presents the results of comprehensive study of the primary diamond deposit of the Nyurbinskaya pipe in the Yakutian diamondiferous province. It is established, that the pipe is confined to the fault junction of four directions and is composed of the kimberlite of four phases. Analysis of different faults and tectonic fracturing allowed to reconstruct the tectonic stress fields acting at the stage of the kimberlite body formation and to determine their occurrence sequence in time. The data obtained about regularities of the Nyurbinskaya pipe compositional structure and results of geologo-structural studies are combined in a single structural-compositional model of the deposit formation. Peculiarities of the fault network operation during the deposit formation stage are confirmed by experimental results using polarization-optical method. The model allowed to formulate the basic structural characteristics of the prospecting works object within which the formation of kimberlite body type of the Nyurbinskaya pipe is possible and to determine the elements of the fault network which are promising for the kimberlite pipes discovery.В ŃŃ‚Đ°Ń‚ŃŒĐ” прДЎстаĐČĐ»Đ”ĐœŃ‹ Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ ĐșĐŸĐŒĐżĐ»Đ”ĐșŃĐœĐŸĐłĐŸ ĐžĐ·ŃƒŃ‡Đ”ĐœĐžŃ ĐșĐŸŃ€Đ”ĐœĐœĐŸĐłĐŸ ĐŒĐ”ŃŃ‚ĐŸŃ€ĐŸĐ¶ĐŽĐ”ĐœĐžŃ Đ°Đ»ĐŒĐ°Đ·ĐŸĐČ Ń‚Ń€ŃƒĐ±ĐșĐ° ĐŃŽŃ€Đ±ĐžĐœŃĐșая. ĐŁŃŃ‚Đ°ĐœĐŸĐČĐ»Đ”ĐœĐŸ, Ń‡Ń‚ĐŸ Ń‚Ń€ŃƒĐ±ĐșĐ° ĐżŃ€ĐžŃƒŃ€ĐŸŃ‡Đ”ĐœĐ° Đș узлу Ń€Đ°Đ·Đ»ĐŸĐŒĐŸĐČ Ń‡Đ”Ń‚Ń‹Ń€Đ”Ń… ĐœĐ°ĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžĐč Đž ŃĐ»ĐŸĐ¶Đ”ĐœĐ°Â ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚Đ°ĐŒĐž чДтырДх Ń„Đ°Đ·. ĐĐœĐ°Đ»ĐžĐ· Ń€Đ°Đ·ĐœĐŸŃ€Đ°ĐœĐłĐŸĐČых разрыĐČĐœŃ‹Ń… ĐœĐ°Ń€ŃƒŃˆĐ”ĐœĐžĐč Đž Ń‚Đ”ĐșŃ‚ĐŸĐœĐžŃ‡Đ”ŃĐșĐŸĐč Ń‚Ń€Đ”Ń‰ĐžĐœĐŸĐČĐ°Ń‚ĐŸŃŃ‚Đž ĐżĐŸĐ·ĐČĐŸĐ»ĐžĐ» ĐČĐŸŃŃŃ‚Đ°ĐœĐŸĐČоть ĐżĐŸĐ»Ń Ń‚Đ”ĐșŃ‚ĐŸĐœĐžŃ‡Đ”ŃĐșох ĐœĐ°ĐżŃ€ŃĐ¶Đ”ĐœĐžĐč, ĐŽĐ”ĐčстĐČĐŸĐČĐ°ĐČшОД ĐœĐ° ŃŃ‚Đ°ĐżĐ” Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžŃ ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČĐŸĐłĐŸ тДла Đž ĐŸĐżŃ€Đ”ĐŽĐ”Đ»ĐžŃ‚ŃŒ ĐżĐŸŃĐ»Đ”ĐŽĐŸĐČĐ°Ń‚Đ”Đ»ŃŒĐœĐŸŃŃ‚ŃŒ ох ĐżŃ€ĐŸŃĐČĐ»Đ”ĐœĐžŃ ĐČĐŸ ĐČŃ€Đ”ĐŒĐ”ĐœĐž. ĐŸĐŸĐ»ŃƒŃ‡Đ”ĐœĐœŃ‹Đ” ĐŽĐ°ĐœĐœŃ‹Đ” ĐŸ Đ·Đ°ĐșĐŸĐœĐŸĐŒĐ”Ń€ĐœĐŸŃŃ‚ŃŃ… ĐČДщДстĐČĐ”ĐœĐœĐŸĐłĐŸ ŃŃ‚Ń€ĐŸĐ”ĐœĐžŃ Ń‚Ń€ŃƒĐ±ĐșĐž ĐŃŽŃ€Đ±ĐžĐœŃĐșĐŸĐč Đž Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹ ĐłĐ”ĐŸĐ»ĐŸĐłĐŸ-струĐșŃ‚ŃƒŃ€ĐœŃ‹Ń… ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč ĐŸĐ±ŃŠĐ”ĐŽĐžĐœĐ”ĐœŃ‹ ĐČ Ń€Đ°ĐŒĐșах Đ”ĐŽĐžĐœĐŸĐč струĐșŃ‚ŃƒŃ€ĐœĐŸ-ĐČДщДстĐČĐ”ĐœĐœĐŸĐč ĐŒĐŸĐŽĐ”Đ»Đž Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžŃ ĐŒĐ”ŃŃ‚ĐŸŃ€ĐŸĐ¶ĐŽĐ”ĐœĐžŃ. ĐžŃĐŸĐ±Đ”ĐœĐœĐŸŃŃ‚Đž Ń„ŃƒĐœĐșŃ†ĐžĐŸĐœĐžŃ€ĐŸĐČĐ°ĐœĐžŃ разрыĐČĐœĐŸĐč сДтО ĐœĐ° ŃŃ‚Đ°ĐżĐ” Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžŃ ĐŒĐ”ŃŃ‚ĐŸŃ€ĐŸĐ¶ĐŽĐ”ĐœĐžŃ ĐżĐŸĐŽŃ‚ĐČĐ”Ń€Đ¶ĐŽĐ”ĐœŃ‹ Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Đ°ĐŒĐž эĐșŃĐżĐ”Ń€ĐžĐŒĐ”ĐœŃ‚ĐŸĐČ Ń ĐžŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°ĐœĐžĐ”ĐŒ ĐżĐŸĐ»ŃŃ€ĐžĐ·Đ°Ń†ĐžĐŸĐœĐœĐŸ-ĐŸĐżŃ‚ĐžŃ‡Đ”ŃĐșĐŸĐłĐŸ ĐŒĐ”Ń‚ĐŸĐŽĐ°. ĐŸĐŸĐ»ŃƒŃ‡Đ”ĐœĐœĐ°Ń ĐŒĐŸĐŽĐ”Đ»ŃŒ ĐżĐŸĐ·ĐČĐŸĐ»ĐžĐ»Đ° ŃŃ„ĐŸŃ€ĐŒŃƒĐ»ĐžŃ€ĐŸĐČать ĐżŃ€ĐžĐ·ĐœĐ°ĐșĐž, ĐŸĐżŃ€Đ”ĐŽĐ”Đ»ŃŃŽŃ‰ĐžĐ” ĐŸŃĐœĐŸĐČĐœŃ‹Đ” струĐșŃ‚ŃƒŃ€ĐœŃ‹Đ” хараĐșтДрОстОĐșĐž ĐŸĐ±ŃŠĐ”Đșта ĐżĐŸĐžŃĐșĐŸĐČых Ń€Đ°Đ±ĐŸŃ‚, ĐČ ĐżŃ€Đ”ĐŽĐ”Đ»Đ°Ń… ĐșĐŸŃ‚ĐŸŃ€ĐŸĐłĐŸ ĐČĐŸĐ·ĐŒĐŸĐ¶ĐœĐŸ Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžĐ” ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČых тДл топа Ń‚Ń€ŃƒĐ±ĐșĐž ĐŃŽŃ€Đ±ĐžĐœŃĐșĐŸĐč, Đž ĐœĐ° ох ĐŸŃĐœĐŸĐČĐ°ĐœĐžĐž ĐČŃ‹ĐŽĐ”Đ»ĐžŃ‚ŃŒ Ń‚Đ” ŃĐ»Đ”ĐŒĐ”ĐœŃ‚Ń‹ Ń€Đ°Đ·Đ»ĐŸĐŒĐœĐŸĐč сДтО (Ń€Đ°Đ·Đ»ĐŸĐŒĐœŃ‹Đ” ŃƒĐ·Đ»Ń‹), ĐșĐŸŃ‚ĐŸŃ€Ń‹Đ” яĐČĐ»ŃŃŽŃ‚ŃŃ пДрспДĐșтоĐČĐœŃ‹ĐŒĐž ĐŽĐ»Ń ĐŸĐ±ĐœĐ°Ń€ŃƒĐ¶Đ”ĐœĐžŃ ĐșĐžĐŒĐ±Đ”Ń€Đ»ĐžŃ‚ĐŸĐČых Ń‚Ń€ŃƒĐ±ĐŸĐș

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)

    An NLO QCD analysis of inclusive cross-section and jet-production data from the ZEUS experiment

    Full text link
    The ZEUS inclusive differential cross-section data from HERA, for charged and neutral current processes taken with e+ and e- beams, together with differential cross-section data on inclusive jet production in e+ p scattering and dijet production in \gamma p scattering, have been used in a new NLO QCD analysis to extract the parton distribution functions of the proton. The input of jet data constrains the gluon and allows an accurate extraction of \alpha_s(M_Z) at NLO; \alpha_s(M_Z) = 0.1183 \pm 0.0028(exp.) \pm 0.0008(model) An additional uncertainty from the choice of scales is estimated as \pm 0.005. This is the first extraction of \alpha_s(M_Z) from HERA data alone.Comment: 37 pages, 14 figures, to be submitted to EPJC. PDFs available at http://durpdg.dur.ac.uk/hepdata in LHAPDFv

    High-E_T dijet photoproduction at HERA

    Get PDF
    The cross section for high-E_T dijet production in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.8 pb-1. The events were required to have a virtuality of the incoming photon, Q^2, of less than 1 GeV^2 and a photon-proton centre-of-mass energy in the range 142 < W < 293 GeV. Events were selected if at least two jets satisfied the transverse-energy requirements of E_T(jet1) > 20 GeV and E_T(jet2) > 15 GeV and pseudorapidity requirements of -1 < eta(jet1,2) < 3, with at least one of the jets satisfying -1 < eta(jet) < 2.5. The measurements show sensitivity to the parton distributions in the photon and proton and effects beyond next-to-leading order in QCD. Hence these data can be used to constrain further the parton densities in the proton and photon.Comment: 36 pages, 13 figures, 20 tables, including minor revisions from referees. Accepted by Phys. Rev.

    Measurement of event shapes in deep inelastic scattering at HERA

    Get PDF
    Inclusive event-shape variables have been measured in the current region of the Breit frame for neutral current deep inelastic ep scattering using an integrated luminosity of 45.0 pb^-1 collected with the ZEUS detector at HERA. The variables studied included thrust, jet broadening and invariant jet mass. The kinematic range covered was 10 < Q^2 < 20,480 GeV^2 and 6.10^-4 < x < 0.6, where Q^2 is the virtuality of the exchanged boson and x is the Bjorken variable. The Q dependence of the shape variables has been used in conjunction with NLO perturbative calculations and the Dokshitzer-Webber non-perturbative corrections (`power corrections') to investigate the validity of this approach.Comment: 7+25 pages, 6 figure
    • 

    corecore