83 research outputs found

    Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    Get PDF
    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O\delta{}^{18}\mathrm{O} and δD\delta\mathrm{D} in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologoue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O\delta{}^{18}\mathrm{O} and δD\delta\mathrm{D} enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O\delta{}^{18}\mathrm{O} and δD\delta\mathrm{D}, three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0\,^\mathrm{o}\mathrm{C}. In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7\,^\mathrm{o}\mathrm{C}

    The effect of a Holocene climatic optimum on the evolution of the Greenland ice sheet during the last 10 kyr

    Get PDF
    Publisher's version (útgefin grein)The Holocene climatic optimum was a period 8–5 kyr ago when annual mean surface temperatures in Greenland were 2–3°C warmer than present-day values. However, this warming left little imprint on commonly used temperature proxies often used to derive the climate forcing for simulations of the past evolution of the Greenland ice sheet. In this study, we investigate the evolution of the Greenland ice sheet through the Holocene when forced by different proxy-derived temperature histories from ice core records, focusing on the effect of sustained higher surface temperatures during the early Holocene. We find that the ice sheet retreats to a minimum volume of ~0.15–1.2 m sea-level equivalent smaller than present in the early or mid-Holocene when forcing an ice-sheet model with temperature reconstructions that contain a climatic optimum, and that the ice sheet has continued to recover from this minimum up to present day. Reconstructions without a warm climatic optimum in the early Holocene result in smaller ice losses continuing throughout the last 10 kyr. For all the simulated ice-sheet histories, the ice sheet is approaching a steady state at the end of the 20th century.This work is supported by the Danish National Research Foundation under the Centre for Ice and Climate, University of Copenhagen and Villum Investigator Project IceFlow. Brice Noël and Michiel van den Broeke (IMAU, Utrecht University) are thanked for providing the RACMO2.3 Greenland SMB, precipitation and temperature data. B. Vinther is thanked for providing the Holocene accumulation reconstruction for the GRIP site. We are grateful for computing resources provided by the Danish Center for Climate Computing, a facility build with support of the Danish e-Infrastructure Corporation and the Niels Bohr Institute. Development of PISM is supported by NASA grants NNX13AM16G and NNX13AK27G. We thank the anonymous reviewers and Ralf Greve for their helpful suggestions which substantially improved the paper.Peer Reviewe

    Continuous CH4 measurements with the NIPR CFA system

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ
    corecore