207 research outputs found

    Biological Lignocellulose Solubilization: Comparative Evaluation of Biocatalysts and Enhancement Via Cotreatment

    Get PDF
    Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible to process cellulosic biomass without thermochemical pretreatment using thermophilic, cellulolytic bacteria. To further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions

    The Effects of High Concentrations of Ionic Liquid on GB1 Protein Structure and Dynamics Probed by High-Resolution Magic-Angle-Spinning NMR Spectroscopy

    Get PDF
    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid–protein interactions. Effect of an ionic liquid (1-butyl-3- methylimidazolium bromide, [C4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6–3.5 M, which corresponds to 10–60% v/v). Interactions between GB1 and [C4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C4-mim]Br were assigned using 3D methods under HR-MAS conditions. Thus, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid–protein interactions

    Melt homogenization and self-organization of chalcogenides glasses: evidence of sharp rigidity, stress and nanoscale phase separation transitions in the GexSe100-x binary

    Full text link
    A Raman profiling method is used to monitor growth of GexSe100-x melts and reveals a two step process of homogenization. Resulting homogeneous glasses show the non-reversing enthalpy at Tg, {\Delta}Hnr(x), to show a square-well like variation with x, with a rigidity transition near xc(1) = 19.5(5)% and stress transition near xc(2) = 26.0(5)%) representing the boundaries of the rigid but stress-free Intermediate Phase (IP). The square-well like variation of {\Delta}Hnr(x) develops sloping walls, a triangular shape and eventually disappears in glasses having an increasing heterogeneity. The {\Delta}Hnr term ages over weeks outside the IP but not inside the IP. An optical analogue of the reversibility window is observed with Raman spectra of as-quenched melts and Tg cycled glasses being the same for glass compositions in the IP but different for compositions outside the IP. Variations of Molar volumes, display three regimes of behavior with a global minimum in the IP and a pronounced increase outside that phase. The intrinsic physical behavior of dry and homogeneous chalcogenides glasses can vary sharply with composition near elastic and chemical phase transitions, showing that the physics of network glasses requires homogeneous samples, and may be far more interesting than hitherto recognized

    Cross-cultural adaptation of research instruments: language, setting, time and statistical considerations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research questionnaires are not always translated appropriately before they are used in new temporal, cultural or linguistic settings. The results based on such instruments may therefore not accurately reflect what they are supposed to measure. This paper aims to illustrate the process and required steps involved in the cross-cultural adaptation of a research instrument using the adaptation process of an attitudinal instrument as an example.</p> <p>Methods</p> <p>A questionnaire was needed for the implementation of a study in Norway 2007. There was no appropriate instruments available in Norwegian, thus an Australian-English instrument was cross-culturally adapted.</p> <p>Results</p> <p>The adaptation process included investigation of conceptual and item equivalence. Two forward and two back-translations were synthesized and compared by an expert committee. Thereafter the instrument was pretested and adjusted accordingly. The final questionnaire was administered to opioid maintenance treatment staff (n=140) and harm reduction staff (n=180). The overall response rate was 84%. The original instrument failed confirmatory analysis. Instead a new two-factor scale was identified and found valid in the new setting.</p> <p>Conclusions</p> <p>The failure of the original scale highlights the importance of adapting instruments to current research settings. It also emphasizes the importance of ensuring that concepts within an instrument are equal between the original and target language, time and context. If the described stages in the cross-cultural adaptation process had been omitted, the findings would have been misleading, even if presented with apparent precision. Thus, it is important to consider possible barriers when making a direct comparison between different nations, cultures and times.</p
    • …
    corecore