143 research outputs found
Short-term contracts: trap or stepping stone toward stable employment?
This paper focuses on labor market transitions and especially on those involving fixed-term contracts. Our contribution is twofold: first, we provide an accurate measure of labor market transitions and focus on transitions from fixed-term contracts to open-ended contracts or unemployment (dealing with the "stepping-stone or dead-end" question) ; second, we analyze the potential incentive effect of fixed-term contracts on effort. To deal with unobserved heterogeneity, we use a dynamic multinomial logit with fixed effects. We estimate the model on the French Labor Force Survey (2002-2008) which provides detailed information on quarterly transitions. We construct an indicator of effort for fixed-term workers based on a compared weekly working time. We find that fixed-term contracts provide slightly better perspectives than unemployment. However, we don't find evidence of any significant impact of working more on the probability of getting an open-ended contract.Fixed-term contracts, effort, transitions
Cauliflower mosaic virus ORF VII is not required for aphid transmissibility
Des mutants du virus de la mosaïque du chou-fleur ont été construits in vitro. La transmissibilité de ces mutants par les pucerons a été testée. Pour que la transmission par pucerons soit possible il faut un ORF II intact, alors que l'ORF VII n'est pas nécessaire. (Résumé d'auteur
Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet
The electric (E) field control of magnetic properties opens the prospects of
an alternative to magnetic field or electric current activation to control
magnetization. Multilayers with perpendicular magnetic anisotropy (PMA) have
proven to be particularly sensitive to the influence of an E-field due to the
interfacial origin of their anisotropy. In these systems, E-field effects have
been recently applied to assist magnetization switching and control domain wall
(DW) velocity. Here we report on two new applications of the E-field in a
similar material : controlling DW nucleation and stopping DW propagation at the
edge of the electrode
A crystallographic phase transition within the magnetically ordered state of Ce_2Fe_17
X-ray diffraction experiments were performed on polycrystalline and
single-crystal specimens of CeFe at temperatures between 10 K and
300 K. Below = 1182 K, additional weak superstructure
reflections were observed in the antiferromagnetically ordered state. The
superstructure can be described by a doubling of the chemical unit cell along
the direction in hexagonal notation with the same space group as the room-temperature structure. The additional antiferromagnetic
satellite reflections observed in earlier neutron diffraction experiments can
be conclusively related to the appearance of this superstructure.Comment: 8 pages, figures, submitted for publication in Phys. Rev.
Theoretical Analysis of the "Double-q" Magnetic Structure of CeAl2
A model involving competing short-range isotropic Heisenberg interactions is
developed to explain the "double-q" magnetic structure of CeAl. For
suitably chosen interactions, terms in the Landau expansion quadratic in the
order parameters explain the condensation of incommensurate order at
wavevectors in the star of (1/2 , 1/2 , 1/2), where
is the cubic lattice constant. We show that the fourth order terms in the
Landau expansion lead to the formation of the so-called "double-q" magnetic
structure in which long-range order develops simultaneously at two
symmetry-related wavevectors, in striking agreement with the magnetic structure
determinations. Based on the value of the ordering temperature and of the
Curie-Weiss of the susceptibility, we estimate that the nearest
neighbor interaction is ferromagnetic, with K and the
next-nearest neighbor interaction is antiferromagnetic with K.
We also briefly comment on the analogous phenomenon seen in the similar system
TmS.Comment: 22 pages, 6 figure
Shell-driven magnetic stability in core-shell nanoparticles
The magnetic properties of ferromagnetic-antiferromagnetic Co-CoO core-shell nanoparticles are investigated as a function of the in-plane coverage density from 3.5% to 15%. The superparamagnetic blocking temperature, the coercivity, and the bias field radically increase with increasing coverage. This behavior cannot be attributed to the overall interactions between cores. Rather, it can be semiquantitatively understood by assuming that the shells of isolated core-shell nanoparticles have strongly degraded magnetic properties, which are rapidly recovered as nanoparticles come into contact
Observation of a Griffiths-like phase in the paramagnetic regime of ErCo_2
A systematic x-ray magnetic circular dichroism study of the paramagnetic
phase of ErCo2 has recently allowed to identify the inversion of the net
magnetization of the Co net moment with respect to the applied field well above
the ferrimagnetic ordering temperature, Tc. The study of small angle neutron
scattering measurements has also shown the presence of short range order
correlations in the same temperature region. This phenomenon, which we have
denoted parimagnetism, may be related with the onset of a Griffiths-like phase
in paramagnetic ErCo2. We have measured ac susceptibility on ErCo2 as a
function of temperature, applied field, and excitation frequency. Several
characteristics shared by systems showing a Griffiths phase are present in
ErCo2, namely the formation of ferromagnetic clusters in the disordered phase,
the loss of analyticity of the magnetic susceptibility and its extreme
sensitivity to an applied magnetic field. The paramagnetic susceptibility
allows to establish that the magnetic clusters are only formed by Co moments as
well as the intrinsic nature of those Co moments
Detection of Neutron Scattering from Phase IV of Ce0.7La0.3B6: A Confirmation of the Octupole Order
We have performed a single crystal neutron scattering experiment on
Ce0.7La0.3B6 to investigate the order parameter of phase IV microscopically.
Below the phase transition temperature 1.5 K of phase IV, weak but distinct
superlattice reflections at the scattering vector (h/2,h/2,l/2) (h, l = odd
number) have been observed by neutron scattering for the first time. The
intensity of the superlattice reflections is stronger for high scattering
vectors, which is quite different from the usual magnetic form factor of
magnetic dipoles. This result directly evidences that the order parameter of
phase IV has a complex magnetization density, consistent with the recent
experimental and theoretical prediction in which the order parameter is the
magnetic octupoles Tbeta with Gamma5 symmetry of point group Oh. Neutron
scattering experiments using short wavelength neutrons, as done in this study,
could become a general method to study the high-rank multipoles in f electron
systems.Comment: 4 pages, 4 figure
- …