138 research outputs found

    Catalytic upgrading of clean biogas to synthesis gas

    Get PDF
    Clean biogas, produced by anaerobic digestion of biomasses or organic wastes, is one of the most promising substitutes for natural gas. After its purification, it can be valorized through different reforming processes that convert CH4 and CO2 into synthesis gas (a mixture of CO and H2). However, these processes have many issues related to the harsh conditions of reaction used, the high carbon formation rate and the remarkable endothermicity of the reforming reactions. In this context, the use of the appropriate catalyst is of paramount importance to avoid deactivation, to deal with heat issues and mild reaction conditions and to attain an exploitable syngas composition. The development of a catalyst with high activity and stability can be achieved using different active phases, catalytic supports, promoters, preparation methods and catalyst configurations. In this paper, a review of the recent findings in biogas reforming is presented. The different elements that compose the catalytic system are systematically reviewed with particular attention on the new findings that allow to obtain catalysts with high activity, stability, and resistance towards carbon formation

    Missense mutations in the PML/RAR alpha ligand binding domain in ATRA-resistant As2O3 sensitive relapsed acute promyelocytic leukemia

    Get PDF
    Background and Objectives. Acute promyelocytic leukemia is characterized by the chromosomal translocation t(15;17) which yields the fusion product PML/RAR alpha. Art-trans retinoic acid probably induces differentiation of atypical promyelocytes and clinical remission in APL patients by binding to the ligand binding domain (LBD) of the RAR alpha portion of the PML-RAR alpha chimeric protein. Structural alterations of the LED of the PML/RAR alpha have been revealed in ATRA-resistant APL cell lines and in a few APL patients with acquired clinical resistance to ATRA therapy. Two APL relapsed patients with clinical resistance to ATRA therapy were evaluated for the presence of nucleotide mutations in the LED of PML/RAR alpha gene and then treated with arsenic trioxide (As2O3). Design and Methods. DNA fragments from the LED of the PML/RAR alpha: chimeric transcript were obtained by reverse-transcribed polymerase chain reaction. Direct sequencing was performed by an unambiguous bidirectional automatic analysis. Samples representative of APL onset and relapse were analyzed from both patients. Results. In both patients, at the ATRA-resistant relapse, a missense point mutation in the LED of the PML/RAR alpha gene was found. The mutations, absent at APL onset, led to an Arg272Gln and to an Arg276Trp amino acid substitution, according to the sequence of the RAR alpha protein. Both patients had complete clinical and hematologic remission after treatment with As2O3. Interpretation and Conclusions. LED missense mutations appear to be a significant mechanism of acquired ATRA-resistance in vivo, closely related to clinical APL relapse. The two cases reported here provide the first in vivo evidence of Apt, relapsed patients, who have become ATRA-resistant for molecular reasons, being sensitive to arsenic trioxide

    Ru–CeO2 and Ni–CeO2 Coated on Open-Cell Metallic Foams by Electrodeposition for the CO2 Methanation

    Get PDF
    CO2 methanation structured catalysts, made by a layer of Ru–CeO2 or Ni–CeO2 (Ru/Ce = 3/97; Ni/Ce = 1/3 and 3/1) on open-cell NiCrAl foams, are prepared by electrodeposition and a subsequent calcination step. The performance of the catalysts at a space velocity of 320,000 mL gcat–1 h–1 in a feedstock with H2/CO2/N2 = 4/1/1 v/v, significantly depends on the Ni content and the preparation method. A low Ru or Ni content promotes the metal–CeO2 interaction, the formation of defects in CeO2 as well as the development of a lower amount of cracks in the coating; however, the catalysts show a poor CO2 conversion and selectivity to CH4. The CH4 production rate at low temperature largely increases for the high Ni loaded catalyst, 68.7 LCH4 gNi–1 h–1 at 350 °C oven temperature. This productivity is similar to the value obtained with a Ni3Ce1 pellet catalyst prepared by the coprecipitation method, a behavior not achievable for low Ru- and Ni-loaded catalysts

    Pandemic influenza A/H1N1 virus in a swine farm house in Sicily, Italy

    Get PDF
    This report describes a pandemic A/H1N1 (H1N1 pdm) virus outbreak occurred in December, 2009 in a swine farm used as research facility (Istituto Mediterraneo Trapianti e Terapie ad Alta Specializzazione) for preclinical studies, located in Sicily, Italy. All the 13 pigs of the farm, showed cough, fever, inappetence and weakness. At the same time, an unvaccinated worker of the stabling showed influenza-like symptoms. RNAv extracted from two swabs collected from infected pigs resulted positive by Real Time RT-PCR for Influenza A virus. Furthermore, after growth on embryonated eggs, viral isolates were identified by Real Time RT-PCR specific for H1N1 pdm virus and characterized antigenically. Sequencing of the whole genome was also performed. All sera taken from animals and from the worker were tested by a competitive Influenza A ELISA and by the haemoagglutination inhibition test. Serological findings confirmed the circulation of influenza virus H1N1 pdm in pigs and the presence of specific antibodies against H1N1 pdm in human serum. The results of this study seem to support a H1N1 pdm transmission from man to animals showing the importance of serological and virological investigation to control the pig farms and the importance of close cooperation between the different authorities like veterinarian and human public. © 2012 Triveni Enterprises

    The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance

    Get PDF
    Impacts of biochar application in combination with organic fertilizer, such as compost, are not fully understood. In this study, we tested the effects of biochar amendment, compost addition, and their combination on lettuce plants grown in a soil poor in nutrients; soil microbiological, chemical, and physical characteristics were analyzed, together with plant growth and physiology. An initial screening was also done to evaluate the effect of biochar and compost toxicity, using cress plants and earthworms. Results showed that compost amendment had clear and positive effects on plant growth and yield and on soil chemical characteristics. However, we demonstrated that also the biochar alone stimulated lettuce leaves number and total biomass, improving soil total nitrogen and phosphorus contents, as well as total carbon, and enhancing related microbial communities. Nevertheless, combining biochar and compost, no positive synergic and summative effects were observed. Our results thus demonstrate that in a soil poor in nutrients the biochar alone could be effectively used to enhance soil fertility and plant growth and biomass yield. However, we can speculate that the combination of compost and biochar may enhance and sustain soil biophysical and chemical characteristics and improve crop productivity over time

    Promotion effect of rare earth elements (Ce, Nd, Pr) on physicochemical properties of M-Al mixed oxides (M = Cu, Ni, Co) and their catalytic activity in N2O decomposition

    Get PDF
    A series of M-AlOx mixed oxides (M = Cu, Co, Ni) with the addition of high loadings of rare earth elements (REE, R = Ce, Nd, Pr; R0.5M0.8Al0.2, molar ratio) were investigated in N2O decomposition. The precursors were prepared by coprecipitation and subsequent calcination at 600\ua0\ub0C. The obtained mixed metal oxides were characterized by X-ray diffraction with Rietveld analysis, N2 sorption, and H2 temperature-programmed reduction. Depending on the nature of REE and the initial M-Al system, R cations could be separately segregated in oxide form or coordinated with the transition metal cations and form mixed structures. The addition of Ce3+ consistently led to nanocrystalline CeO2 mixed with the divalent oxides, whereas the addition of Nd3+ or Pr3+ resulted in the formation of their respective oxide phases as well as perovskites/Ruddlesden–Popper phases. The presence of REE modified the textural and redox properties of the calcined materials. The rare earth element-induced formation of low-temperature reducible MOx species that systematically improved the N2O decomposition on the modified catalysts compared to the pristine M-Al materials by the order of Co > Ni > Cu. The Ce0.5Co0.8Al0.2 catalyst revealed the highest activity and remained stable (approximately 90% of N2O conversion) for 50\ua0h during time-on-stream in 1000\ua0ppm N2O, 200\ua0ppm NO, 20 000\ua0ppm O2, 2500\ua0ppm H2O/N2 balance at WHSV = 16 L g−1\ua0h−1

    Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells

    Get PDF
    The mesenchymal state in cancer is usually associated with poor prognosis due to the metastatic predisposition and the hyper-activated metabolism. Exploiting cell glucose metabolism we propose a new method to detect mesenchymal-like cancer cells. We demonstrate that the uptake of glucose-coated magnetic nanoparticles (MNPs) by mesenchymal-like cells remains constant when the glucose in the medium is increased from low (5.5 mM) to high (25 mM) concentration, while the MNPs uptake by epithelial-like cells is significantly reduced. These findings reveal that the glucose-shell of MNPs plays a major role in recognition of cells with high-metabolic activity. By selectively blocking the glucose transporter 1 channels we showed its involvement in the internalization process of glucose-coated MNPs. Our results suggest that glucose-coated MNPs can be used for metabolic-based assays aimed at detecting cancer cells and that can be used to selectively target cancer cells taking advantage, for instance, of the magnetic-thermotherapy

    Pathogenetic investigations on the enteric nervous system plexuses of sarda breed sheep with different PrP genotypes following oral experimental scrapie infection

    Get PDF
    We investigated the ileal myenteric (MPs) and submucosal plexuses (SMPs) of 32 Sarda breed sheep carrying different PrP genotypes (ARQ/ARQ, ARQ/AHQ, ARQ/ARR, ARR/ARR), which had been orally dosed with scrapie at 8 months of age and euthanized at definite time intervals post-infection (p.i.)

    SARS-CoV-2 complete genome sequencing from the Italian Campania region using a highly automated next generation sequencing system

    Get PDF
    Since the first complete genome sequencing of SARS-CoV-2 in December 2019, more than 550,000 genomes have been submitted into the GISAID database. Sequencing of the SARS-CoV-2 genome might allow identification of variants with increased contagiousness, different clinical patterns and/or different response to vaccines. A highly automated next generation sequencing (NGS)-based method might facilitate an active genomic surveillance of the virus

    Association between air pollution and ventricular arrhythmias in high-risk patients (ARIA study): a multicentre longitudinal study

    Get PDF
    Summary Background Although the effects of air pollution on mortality have been clearly shown in many epidemiological and observational studies, the pro-arrhythmic effects remain unknown. We aimed to assess the short-term effects of air pollution on ventricular arrhythmias in a population of high-risk patients with implantable cardioverter-defibrillators (ICDs) or cardiac resynchronisation therapy defibrillators (ICD-CRT). Methods In this prospective multicentre study, we assessed 281 patients (median age 71 years) across nine centres in the Veneto region of Italy. Episodes of ventricular tachycardia and ventricular fibrillation that were recorded by the diagnostic device were considered in this analysis. Concentrations of particulate matter of less than 10 μm (PM 10 ) and less than 2·5 μm (PM 2·5 ) in aerodynamic diameter, carbon monoxide, nitrogen dioxide, sulphur dioxide, and ozone were obtained daily from monitoring stations, and the 24 h median value was considered. Each patient was associated with exposure data from the monitoring station that was closest to their residence. Patients were followed up for 1 year and then scheduled to have a closing visit, within 1 more year. This study is registered with ClinicalTrials.gov, number NCT01723761. Findings Participants were enrolled from April 1, 2011, to Sept 30, 2012, and follow-ups (completed on April 5, 2014) ranged from 637 to 1177 days (median 652 days). The incidence of episodes of ventricular tachycardia and ventricular fibrillation correlated significantly with PM 2·5 (p 10 . An analysis of ventricular fibrillation episodes alone showed a significant increase in risk of higher PM 2·5 (p=0·002) and PM 10 values (p=0·0057). None of the gaseous pollutants were significantly linked to the occurrence of ventricular tachycardia or ventricular fibrillation. In a subgroup analysis of patients with or without a previous myocardial infarction, only the first showed a significant association between particulate matter and episodes of ventricular tachycardia or ventricular fibrillation. Interpretation Particulate matter has acute pro-arrhythmic effects in a population of high-risk patients, which increase on exposure to fine particles and in patients who have experienced a previous myocardial infarction. The time sequence of the arrhythmic events suggests there is an underlying neurally mediated mechanism. From a clinical point of view, the results of our study should encourage physicians to also consider environmental risk when addressing the prevention of arrhythmic events, particularly in patients with coronary heart disease, advising them to avoid exposure to high levels of fine particulate matter. Funding There was no funding source for this study
    • …
    corecore