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Glucose is a key driver for 
GLUT1-mediated nanoparticles 
internalization in breast cancer cells
Leonardo Venturelli1,2,3, Silvia Nappini2, Michela Bulfoni3, Giuseppe Gianfranceschi3, 
Simone Dal Zilio2, Giovanna Coceano1,2, Fabio Del Ben1,3, Matteo Turetta3, Giacinto Scoles3, 
Lisa Vaccari4, Daniela Cesselli3 & Dan Cojoc2

The mesenchymal state in cancer is usually associated with poor prognosis due to the metastatic 
predisposition and the hyper-activated metabolism. Exploiting cell glucose metabolism we propose 
a new method to detect mesenchymal-like cancer cells. We demonstrate that the uptake of glucose-
coated magnetic nanoparticles (MNPs) by mesenchymal-like cells remains constant when the glucose 
in the medium is increased from low (5.5 mM) to high (25 mM) concentration, while the MNPs uptake by 
epithelial-like cells is significantly reduced. These findings reveal that the glucose-shell of MNPs plays 
a major role in recognition of cells with high-metabolic activity. By selectively blocking the glucose 
transporter 1 channels we showed its involvement in the internalization process of glucose-coated 
MNPs. Our results suggest that glucose-coated MNPs can be used for metabolic-based assays aimed 
at detecting cancer cells and that can be used to selectively target cancer cells taking advantage, for 
instance, of the magnetic-thermotherapy.

Around 1930, Otto Heinrich Warburg discovered that, even in the presence of oxygen, tumor cells undergo 
aerobic glycolysis rather than a normal oxidative phosphorylation1. Aerobic glycolysis produces just 2 molecules 
of ATP per molecule of glucose, while up to 36 ATP molecules are produced by oxidative phosphorylation, thus 
cancer metabolism and oncogenes have been investigated to better understand the reason why tumor cells, that 
require high ATP levels to supply their energy needs, take this pathway2. Nowadays it is clear that both normal 
and tumor cells are capable to switch oxidative pathway to overcome their energetic drawbacks, the former pro-
cess by a finely regulated way whereas the second is allowed by a deregulated gene expression3,4. Although it is 
not clear whether the Warburg effect is the cause or the consequence of the genetic dysregulation5, the increased 
glucose metabolism of cancer cells has been used for diagnostics purposes, such as for the Positron Emission 
Tomography with the [18F]-Fluorodeoxyglucose ([18F]FDG)6,7. In a recent paper, Alvarez and co-workers demon-
strated a high [18F]FDG uptake, by glucose specific transporter 1 (GLUT1), in aggressive Her2-positive mammary 
tumors8. Moreover, in this high grade cancer, it has been demonstrated that the aerobic glycolytic metabolism 
correlates with tumor aggressiveness9. GLUT1 protein is member of a family of glucose transporter molecules 
belonging to solute carrier 2A (SLC2A)10 and it is over-expressed in cell lines derived from highly aggressive 
tumors, both as mRNA11 and protein12. These and other works13,14 outlined the particular metabolic process 
characterizing the high aggressive cancer cells. Specifically targeting these cells by exploiting their metabolic path-
ways15,16, rather than using membrane receptors, represents one of the most interesting and promising approaches 
in cancer research, that could, for instance, help to overcome drug resistance12,17.

In this work we proposed a metabolic-based method to detect breast cancer cells with a basal phenotype 
(basal cells with mesenchymal features)18 and discriminate them, in a co-culture environment, from those with 
a luminal phenotype. MCF7 and MDA-MB-231 have been chosen as breast cancer cell lines representative of 
luminal and basal cells, respectively. MCF7 cells, bearing a CD44neg/Ep-CAMpos/E-cadherinpos phenotype, have 
been classified as luminal-epithelial and weakly metastatic19. Despite of their epithelial origin, MDA-MB-231 
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cells, presenting a 85 ±  5% of CD44 + /CD24− population, positive to CD105 and negative for both Ep-CAM and 
E-cadherin staining, are classified as mesenchymal-like phenotype with tendency to metastasize19. This cell line 
over-expresses GLUT1 and typically exhibits Warburg effect characteristics as demonstrated in a xenograft mouse 
model, by correlating the acidification of the external tumor microenvironment to the lactic acid production20. 
Moreover, this occurrence was proved to be the key driver for local invasion from both primary and metastatic 
tumor masses, with consequent enhanced growth conditions21,22.

Combining the knowledge on GLUT1 expression patterns with the Warburg effect, our goal was to investigate 
on the differences between mesenchymal- and epithelial like cancer cells. Due to their large application in cancer 
diagnosis and treatment, we used glucose-coated MNPs as vectors introduced in the culture medium. Regarding 
MNP uptake, we proved a distinctive behavior between epithelial- and mesenchymal-like cells, thus allowing us 
to discriminate them in co-culture. Interestingly, tuning the glucose concentration in the medium could further 
enhance this difference.

Results
Glucose coated CoFe2O4 NPs characterization and biocompatibility validation.  To have the con-
trol on the MNPs properties and their chemical functionalization we synthesized CoFe2O4 NPs in the laboratory, 
following the protocol described in the Methods section. The covalent binding of glucose and its fluorescent 
analogue, the 2–2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG), to the CoFe2O4 
NPs has been chemically characterized using Attenuated Total Reflection–Fourier Transform Infra-Red (ATR-
FTIR) spectroscopy. The absorbance spectra of citrate stabilized MNPs (blue line), 2-NBDG functionalized MNPs 
(black line) and glucose MNPs (red line) are reported in Fig. 1a. The ATR spectrum of the citrate stabilized MNPs 
is characterized by few broad bands, the most intense of which are centered at 1396 cm−1 (symmetric stretching 
of COO−) and 1579 cm−1 (asymmetric stretching of COO−). This vibrational pattern reveals the presence of free 

Figure 1.  CoFe2O4 NPs covalently functionalized with glucose and 2-NBDG. (a) ATR-FTIR absorbance 
spectra: citrate coated MNPs (blue), 2-NBDG coated MNPs (black), D-glucose coated MNPs. The covalent 
reaction between MNPs and the glucose molecules can be appreciated by the peak at 1737 cm−1, associated with 
the ester bonding formation. (b) A representative SEM image of CoFe2O4 NPs; scale bar 80 nm. (c) MNPs size 
distribution (counts normalized to the total number of measured particles). MNPs mean size : 27 ±  3 nm.
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carboxylate moieties, while the shifts of the carbonyl group of carboxylic moieties from 1710 cm−1, in free solu-
tion, to 1679 cm−1 proved the partial single bond character of the C= O group and consequently the chemisorp-
tions of carboxylate ions onto the MNPs surface23,24. The coordination band was further shifted as a consequence 
of the functionalization with the glucose derivative while the carboxylate spectral features were greatly suppressed 
due to the esterification reaction involving the –OH group of 2-NBDG. A further proof of the covalent ester 
bonding formation was given by the absorbance peak at 1737 cm−1 in MNPs – 2NBDG sample as for the glucose 
one. The absorbance peaks in the spectral region between 1200 and 900 cm−1 are correlated to specific vibrational 
characteristics of glucose molecule.

The size of MNPs has been measured by Scanning Electron Microscopy (SEM), finding a mean diameter of 
27 ±  3 nm for all the three samples (citrate, 2-NBDG and glucose coated NPs) (Fig. 1b,c). Neither the functionali-
zation with 2-NBDG nor the one with D-glucose affected the mean diameter of NPs due to the under-nanometer 
size of functionalizing agents.

Before proceeding with the MNPs administration to breast cancer cell lines, both MDA-MB-231 and MCF7 
cell lines have been evaluated for their specific marker expression confirmation (data provided as Supplementary 
Fig. 1 and Supplementary Methods). To exclude possible side effects, cell lines have been firstly tested for tox-
icity related to the use of MNPs functionalized with the 2-NBDG. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diph
enyltetrazolium bromide (MTT) assay viability assay has been employed to assess the low cytotoxicity of the 
2-NBDG-MNPs administration at 2.5 μ g/mL, equivalent to 4.6*1010 NPs/mL in accordance to literature25 (see 
Supplementary Fig. 4).

Glucose concentration in culture medium drives the uptake of glucose coated CoFe2O4 
NPs.  To assess differences in the glucose uptake between mesenchymal- and epithelial- like tumor cells, we 
investigated the ability of MDA-MB-231 and MCF7 cells in internalizing glucose-modified MNPs. The shift of 
glucose concentration from low to high was already proven to promote the proliferation of mammary cells26. 
Here, we analyzed MNPs uptake to prove salient disparities between epithelial-like and mesenchymal-like cells. 
Three different techniques have been employed: Perls’ iron staining (Fig. 2 and Supplementary Fig. 5), fluores-
cence confocal microscopy (Fig. 3) and FIB cell milling (Fig. 4). Perl’s iron staining was firstly used to assess the 
presence of MNPs inside the cells through the recognition of the iron. Confocal microscopy was used to quantify 
the fluorescent MNPs uptake avoiding underestimation and FIB cell milling was finally employed to further 
demonstrate the presence of internalized glucose-MNPs both as aggregates and single particles.

At normal glucose concentration, both epithelial-like and mesenchymal-like cell lines were found positive to 
MNPs uptake, although the MNPs internalization by MDA-MB-231 cells was significantly higher with respect to 
that of MCF7. This difference further increased at high glucose concentration, since the uptake ability of MCF7 
cells resulted to be significantly reduced whereas that one of MDA-MB-231 remained unchanged. In fact, as it is 
shown in Fig. 2b (black bars), the uptake for MCF7 cells decreased by 79.3% (from 58 to 12%) from normal to 
high glucose concentration, while it remained unchanged for MDA-MB-231 cells (Fig. 2d, white bars).

Data recorded from co-culture samples are reported in Fig. 2e,f. Although the subtype discernment was not 
achievable, due to the absence of a cell specific marker, counting the Prussian-blue positive cells provided valuable 
results. The percentage of positive cells at low glucose concentration (77 ±  12%) was lower than that registered 
for the MDA-MB-231 cells alone, result explicable considering the contribution of MCF7 cells. Moreover, this 
effect was confirmed at high glucose concentration where a percentage of 47% positive cells were found. In fact, 
as expected, the number of positive cells in co-culture, due to the contribution of MCF7 cells, was more evident 
at high than at low glucose concentration (Fig. 2f).

To establish that MNPs were indeed internalized by cells and not simply adherent to the cell surface, their dis-
tribution within the cells (previously treated with CoFe2O4–2-NBDG NPs) were confirmed by collecting z-stack 
confocal images of cells labeled by DAPI and phalloidin to identify nuclei and cytoplasmic actin filaments, respec-
tively (see Supplementary Movies 1 and 2).

Figure 3a,b show representative fluorescence images of MCF7 and MDA-MB-231 cells in which internal-
ized fluorescent CoFe2O4–2-NBDG NPs (red color) are illustrated to exemplify the distinct behavior of the two 
cell lines. Specifically, at normal glucose concentration both epithelial-like and mesenchymal-like cell lines were 
found positive to MNPs uptake, with pronounced particle internalization by MDA-MB-231. On the contrary, 
at high glucose concentration, the uptake ability of MCF7 cells was reduced whereas that of MDA-MB-231 
remained almost unchanged (Fig. 3d). MNPs uptake has been tested also in co-cultures of the two breast can-
cer cell lines using an anti E-cadherin antibody to specifically detect, within the co-culture, MCF7 cells (see 
Methods). MNPs-fluorescence quantification by confocal microscopy of the E-cadherin –positive and –negative 
cells revealed comparable uptake values to those observed in single cultures (Fig. 3c and Supplementary Movie 3).  
Specifically, there was a significant increased uptake of MNPs in the E-Cadherin negative cells with respect to 
those positive for the epithelial surface markers at both glucose concentrations. Moreover, as for the MCF7 in 
single culture, the uptake of MNPs in E-cadherin positive cells significantly decreased when cultured at higher 
glucose concentration (Fig. 3c,d).

Since the resolution of the confocal microscope is unable to resolve single MNPs we decided to quantitatively 
evaluate the uptake difference between the two cell lines by measuring the total fluorescence emitted by the cells 
rather than counting the fluorescent particles. Specifically, analyzing samples treated or not by MNPs, we defined 
the uptake ratio, Ru, (see methods) as a metrics to evaluate MNPs uptake. The quantitative analysis confirmed that 
at low glucose concentration, MDA-MB-231 cells showed a significantly higher glucose uptake than MCF7 cells. 
Nevertheless, increasing the glucose concentration the uptake did not change significantly for MDA-MB-231 
cells (from Ru =  1.10 to Ru =  1.05, p =  n.s., Fig. 3d) while it decreased by 85.4% in MCF7 cells (from Ru =  0.48 to 
Ru =  0.07, p < 0.01, Fig. 3d).
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The increased uptake of MNPs by MDA-MB-231 cells, with respect to MCF7 cells, could be explained by 
the different amount of GLUT1 protein expressed by these two breast cancer cell lines (Supplementary Figs 2 
and 3). In fact, at 5 mM glucose concentration the relative amount of GLUT1 was about 3.8 times higher in the 
mesenchymal-like representative cell line respect to the epithelial-like one, while at high glucose concentration 
(25 mM) this ratio increased to 10 after 48 hours (see Supplementary Figs 2 and 3). Consistently, the glucose 
modified MNPs uptake paralleled the GLUT1 expression levels. At high glucose concentration, the uptake ability 
of MCF7 cells was significantly reduced whereas that one of MDA-MB-231 remained unchanged.

The further confirmation of MNPs internalization by breast cancer cell lines was achieved by the FIB pre-
cise milling technique coupled with SEM inspection (see Methods). Two representative images of MCF7 and 
MDA-MB-231 cell lines, treated with CoFe2O4–2-NBDG NPs and that subsequently underwent to the cytoplasm 
precise FIB milling, are provided in Fig. 4. In the MCF7 case (Fig. 4a) an image of the inner part of the cytoplasm 
is reported, where several white objects can be appreciated (Fig. 4b). These white particles showed an average size 
of 30 nm, in accordance with the measured mean diameter of functionalized CoFe2O4 NPs. The white color of 
these is due to the electronic contrast that belongs to the different atomic mass of metals (cobalt and iron in this 
case), usually completely absent into cells. In support, also not-treated cells underwent the milling process and 
such evidence was not registered at all. In Fig. 4c an example of MDA-MB-231 cells showing few big MNPs clus-
ters (around 500 nm) on the membrane can be seen. When the cells were investigated by the FIB-SEM technique, 
beside the aggregate, it was also possible to assess the presence of several internalized single-particles, pointed out 
by the measuring bars, with a size in accordance with that of MNPs, in Fig. 4d.

The glucose functionalization is necessary for MNPs uptake.  The data obtained on CoFe2O4–
2-NBDG NPs uptake provided the insights for further investigation about the internalization process and its 
reliance on glucose shell. To exclude that MNPs internalization was a process independent from the glucose 

Figure 2.  Glucose shell improves the MNPs uptake in breast cancer cell lines. The importance of the MNPs 
glucose shell has been evaluated at both glucose medium concentrations by counting the Prussian-blue positive 
cells after the Perls’ iron staining. Representative images of MCF7 (a), MDA-MB231 (c) and co-culture of MCF7 
and MDA-MB231 cells (e) in which iron deposits are identified by blue and nuclei are counter-stained by red 
congo. (b,d,f) quantification of the fraction of MCF7 (b), MDA-MB231 (d) and co-culture (f) cells showing 
MNPs internalization (number of cells counted per sample: >  200). Data are presented as mean ±  standard 
deviation. *p <  0.01 vs. 5.5 mM (t-test). Scale bars: 50 μ m.
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functionalization, citrate MNPs have been used as controls. When the fraction of cells internalizing MNPs was 
evaluated by the Perls’ iron staining, with respect to citrate MNPs, a significantly increased fraction of cells 
resulted to internalize CoFe2O4–2-NBDG and CoFe2O4–D-glucose NPs, with no differences between these two 
latter groups (see Supplementary Fig. 6).

In order to better appreciate the MNPs uptake process, a time dependent analysis was carried out reveal-
ing a saturation value at 2 hours for both breast cancer cell lines. In more detail, the MCF7 samples evidenced 
an increasing uptake of 2-NBDG and D-glucose coated MNPs at low glucose concentrations with about 60% 
of positive cells after 120 minutes (Supplementary Information Fig. 6a). The glucose-independent uptake of 

Figure 3.  Glucose medium concentration discriminates between mesenchymal-like and epithelial-like 
breast cancer cells. Data were obtained analyzing by confocal microscope breast cancer cell lines treated with 
MNPs functionalized with 2-NBDG at the reported glucose concentrations. (a,b), Representative images of 
MCF7 (a) and MDA-MB231 (b) treated with 2.5 μ g/mL CoFe2O4–2-NBDG NPs at both glucose medium 
concentrations. In the upper panels, MNPs are identified by the red fluorescence; in the lower panels, the 
localization of MNPs (red fluorescence) within the cells is confirmed by the presence of actin filaments (cyan 
fluorescence of rhodamine-conjugated phalloidin), and nuclei (blue fluorescence of DAPI). MCF7 cells 
exhibited a low uptake of 2-NBDG functionalized MNPs at 5.5 mM glucose concentration and quasi-null 
uptake ability at 25 mM glucose concentration. Conversely, MDA-MB-231 cells exhibited a quite constant 
uptake of 2-NBDG functionalized MNPs at both glucose concentrations. (c) representative image of a MCF7/
MDA-MB231 co-culture sample; MNPs are evidenced in red while cyan fluorescence identifies the E-cadherin 
expression (epithelial marker) and nuclei are depicted by the blue fluorescence of DAPI. (d) Quantification of 
the CoFe2O4–2-NBDG NPs uptake by MCF7 and MDA-MB-231 cells, at both glucose medium concentration. 
Data are presented as mean ±  standard deviation. *, **, ***p <  0.01 vs. the first, the second and the third 
column, respectively (One way Anova followed by post-hoc Bonferroni test). Scale bars: 50 μ m.
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citrate-coated MNPs by MCF7 cells ranged between 10 and 20% after 2 hours of incubation. Hence, the 2-NBDG 
(or glucose) vs. citrate coated MNPs intake at 5.5 mM concentration was significantly different in MCF7. 
Conversely, at high glucose concentration, a quite-similar number of positive cells has been registered regardless 
of the functionalization, ranging from 10 to 18%, leading to the hypothesis of a completely glucose-independent 
uptake mechanism at this concentration in MCF-7 cells (Supplementary Information Fig. 6b).

Considering MDA-MB-231 samples, the estimation of total Prussian-blue positive cells confirmed 
a time-dependent internalization trend at both glucose medium concentrations, with a peak, as for the 
epithelial-like counterpart, at 2 hours (Supplementary Information Fig. 6c,d). In the case of citrate coated 
MNPs, the total number of positive cells was ranging between 5 and 20%, depending on the incubation inter-
val. Differently from MCF7 cells, MDA-MB-231 cells maintained a high percentage of 2-NBDG/D-glucose 
MNPs-positive cells at both low and high glucose concentration, being the internalization always significantly 
superior to that of the citrate counterpart. Comparing 2-NBDG with D-glucose functionalization, no remarkable 
differences were appreciated among low and high glucose-concentrations: 87% and 83% at 5.5 mM; 77% and 81% 
at 2 mM (Supplementary Information Fig. 6c,d).

Glucose transporter 1 guides the uptake of CoFe2O4–2-NBDG NPs.  To confirm the role played 
by GLUT1 and explain the differences in the observed high glucose uptake, GLUT1 specific inhibition was car-
ried out using both a chemical compound (STF-31) and a biological inhibition (small interference RNA, siRNA, 
transfection).

The STF-31 cytotoxicity has been evaluated by MTT assay, executed at different concentrations and 
time points, before proceeding with the MNPs uptake inhibition studies (see Supplementary Methods and 
Supplementary Fig. 7).

Drug concentrations of 5 μ m for MCF7 and 10 μ m for MDA-MB-231 have been chosen as the lowest concen-
tration inducing a time-dependent MNPs uptake reduction without observing a marked cytotoxicity for each cell 
type. Indeed, at double concentrations (10 μ m for the epithelial-like subtype and 20 μ m for the mesenchymal-like 
one) an earlier uptake inhibition was observed together with an increased cytotoxicity. The MNPs uptake inhibi-
tion was quantified by fluorescence assay for the CoFe2O4–2-NBDG NPs and by Perls’ staining for the D-glucose. 
STF-31-mediated inhibition revealed an essential involvement of the GLUT1 transporters in the glucose modified 
MNPs internalization in both breast cancer cell lines. In the case of MFC7, the first statistically significant uptake 
inhibition effect was achieved after 4 hours with the maximum reached after 8 hours (Fig. 5a,c). In contrast, 
MDA-MB-231 cells revealed a significant CoFe2O4–2-NBDG NPs uptake diminution after 16 hours of 10 μ M 
STF-31 incubation, reaching the maximum effect at 32 hours (Fig. 5b,d). The fluorescence CoFe2O4–2-NBDG NPs 

Figure 4.  MNPs internalization investigated by the FIB-SEM technique. (a) a SEM image of a MCF7 cell 
before undergoing the precise milling process by the FIB gun. Scale bar: 5 μ m. (b) a cytoplasm portion of the 
MCF7 cell depicted in (a), after the milling procedure and the zooming in, where several white and rounded 
objects are visible. In this picture a high brightness/contrast ratio was set to better appreciate the separation line 
between cytoplasm (grey) and external membrane (white). The white particles in these images have a range 
diameter of 20–40 nm, in agreement with the MNPs diameter expectations. The bottom part, in grey, is the glass 
surface where the cells grew. Scale bar: 200 nm. (c) a SEM image of two MDA-MB-231 cells before undergo the 
precise milling process. Scale bar: 5 μ m. (d) the cell in (c), after the FIB-guided milling process, displays a MNPs 
aggregate and several single particles inside the cytoplasm. The bottom part is, as before, the glass surface. Scale 
bar: 200 nm.
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evaluation at the last incubation time points furnished, for both cell lines, a really low “Uptake Ratio” value: 0.1 for 
MCF7 and 0.2 for MDA-MB-231 (Fig. 5c,d). In order to confirm these data, Perls’ iron staining was performed as 
well, finding about 20% of Prussian-blue positive cells after 8 and 32 hours for MCF7 and MDA-MB-231, respec-
tively (see Fig. 5e,f). Again, no differences between the kinetic of inhibition of MNPs internalization was observed 
for MDA-MB-231-7 at 5.5 and 25 mM.

Figure 5.  Selective inhibition of GLUT1 transporters suppresses the MNPs glucose shell effect. (a,b) 
representative examples of MCF7 (a) and MDA-MB-231 (b) fluorescence images after the administration of STF-
31 inhibitor at different time points (glucose medium concentration: 5.5 mM). In red are evidenced the MNPs, 
in cyan the actin filaments and in blue the nuclei. Scale bars: 30 μ m. (c,d) histograms represent the uptake ratio 
(mean ±  standard deviation) of MCF7 (c) and MDA-MB231 (d) at different time points. *, **, ***p <  0.01 vs. the 
first, the second and the third column, respectively (One-way Anova followed by Bonferroni post-hoc test).  
(e,f) Quantification of the MNPs-uptake as fraction of cells stained by the Perls’ iron after GLUT1 inhibition 
in MCF7 cells (STF-31 administered at 5 μ m) (e) and MDA-MB-231 cells (STF-31 administered at 10 μ m) 
(f). About a 20% of positive cells were found in both cancer subtypes at the latter time points, probably due to 
unspecific uptake processes. A two-way ANOVA test was used to examine the influence of time and glucose-
concentration on MNPs uptake in either MCF7 (e) or MDA-MB-231 (f). *p <  0.0001 vs. 25 mM.
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The biological inhibition of GLUT1 protein expression has been obtained by transfecting a specific siRNA 
against GLUT1 mRNA and the inhibition of MNPs uptake has been evaluated 72 hours after transfection. As 
shown in Fig. 6, the specific inhibition of GLUT1 protein synthesis determines a consequent lower amount of 
GLUT1 protein presented on membranes. This diminished protein level, in both breast cancer cell lines, is associ-
ated with a significant decrease in the 2-NBDG modified MNPs internalization. Specifically, after GLUT1 siRNA 
administration, MCF7 and MDA-MB-231 cells showed about 13% and 15% of MNPs positive cells, respectively 
(Fig. 6d,h), corresponding to a 78% and 81% fold decrease in the corresponding uptake capacity, respectively.

CoFe2O4–2-NBDG NPs irradiation permits to obtain hyperthermia effects into 
mesenchymal-like breast cancer cells.  Specific internalization of CoFe2O4–2-NBDG NPs has been 
exploited for hyperthermia studies, taking advantage of the low IR light cell absorption against the high MNPs 
absorption. The presence of MNPs inside cells was double checked by the light scattered by the MNPs when 

Figure 6.  Direct inhibition of GLUT1 transporter via siRNA transfection reduces MNPs uptake in breast 
cancer cells. The effect of GLUT1 silencing via specific siRNA transfection is reported both as GLUT1 protein 
diminished expression (a,b,e,f) and as 2-NBDG MNPs diminished uptake (c,d,g,h). (a,e) epi-fluorescence 
images of GLUT1 protein expression (in red) in MCF7 (a) and MDA-MB-231 (e) cells, respectively. The 
decrease of GLUT1 protein expression on breast cancer cells, has been quantified as mean fluorescence intensity 
(MFI). (b,f) the fluorescence quantification of images in a and e, respectively, is reported for both treatment 
(siRNA CTR: scrambled small interfering RNA). (c,g) The effect of GLUT1 silencing on 2-NBDG MNPs uptake 
has been evaluated by counting the fraction of Prussian-blue positive cells after the Perls’ iron staining. (d,h): 
quantification of the fraction of MCF7 (d), MDA-MB231 (h) cells showing MNPs internalization (number of 
cells counted per sample: >  300). All data are presented as mean ±  standard deviation. *p <  0.01 vs. siRNA CTR 
samples (t-test). Scale bars: 50 μ m.
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irradiated with an IR laser beam and by the fluorescence emitted by the MNPs (see Supplementary Movies 4–7). 
An IR laser beam was focused on a spot of about 4 μ m2 on the cell area occupied by MNPs. The laser power, on 
cell target, was increased from 0 to 15 mW by steps of 1 mW. As an effect of localized heating, cells reacted as a 
function of MNPs number and irradiation time. Hyperthermia targeted cells were recorded in order to observe 
different heating signals like: bubbles formation, cell shape modification or more drastic effects as cell death. With 
the purpose to better appreciate the MDA-MB-231 cell shape modification as consequence of the localized heat-
ing, the cell contour before and after the hyperthermia was outlined from three movies. These data are provided 
as Supplementary Fig. 8. To discard the effect of the laser beam on target cells MNPs per se, we focused the laser 
beam on a sample of MDA-MB-231 cells not treated with MNPs at the maximum power (15 mW) for almost 
5 minutes. As illustrated in Fig. 7a,b no damaging effects have been observed (see also Supplementary Movie 8). 
On the contrary, the MNPs-treated samples exhibited visible effects correlated to the localized heating induced by 
MNPs the IR light absorption by MNPs during irradiation (Fig. 7c,d; Supplementary Movies 4–7).

Discussion
In the last decade, several types of NPs have been developed and proposed in the medical research field. Although 
diverse size and core-shell properties have been suggested and deeply investigated for in vivo purposes, several 
limitations slowed down their clinical applications27. In particular, their pronounced tropism for filter organs, 
with the consequent accumulation and cytotoxicity, enormously delayed the translation into therapy. On the con-
trary, from a diagnostic point of view, MNPs received very much attention for the development of new and effi-
cient rare cancer-cells enrichment techniques28. In this field the only FDA-approved method to detect and count 
rare circulating tumor cells (CTCs) in metastatic breast, colon and prostate cancer is CellSearch (Veridex)29. 
This method is based on the selection of circulating cells expressing the epithelial specific EpCam antigen. Since 
this latter is quite low expressed by White Blood Cells (WBCs), it received an extraordinary attention to detect 
tumor cells of epithelial origin both for diagnostics and in targeted treatment approaches30,31. However, since 
the expression of EpCam can be lost by cells in EMT32, this method can fail in detecting mesenchymal CTCs. 
To detect mesenchymal CTC it has been so far proposed a multi-parametric approach based on the combined 
expression of markers useful for the recognition of mesenchymal cancer cells: CD1533, HER-234, CD3435, CD4435, 
CD4536, CD4736, Plastin-337, Vimentin38 are the most diffused biomarkers used to enrich and identify CTCs of 
mesenchymal-origin. These aggressive and metastatic-prone cells own a higher glucose metabolism exhibiting 
the Warburg effect (as described in the introduction), with a consequently higher demand of energy and glucose 
uptake needs. The main glucose uptake way is via the glucose transporter channels (Glut family) and their expres-
sion is particularly sustained in the mesenchymal cancer subtype.

Here we introduced a MNPs-based method that in principle could provide a simple and low-cost imple-
mentation to identify GLUT1-overexpressing cells. Exploiting the glucose cell metabolism, the glucose modified 
MNPs developed in this work allowed targeting the highly metabolic active breast cancer cells. Epithelial-like and 
mesenchymal-like cell models have been investigated and compared from a metabolic point of view, leading to 
the conclusion that at low glucose condition they both internalized glucose-modified MNPs, even though with 
an appreciable disparity due to their relative GLUT1 protein expression. Increasing the medium glucose level to 
a non-physiological concentration (25 mM) reflected into an even higher difference between the two cell models 
tested. Indeed the demonstration of a very well distinguished MNPs uptake ability at 25 mM concentrated glucose 
could lead in the next future to new feasible solutions in CTCs diagnostics. Moreover metabolism-based methods 

Figure 7.  CoFe2O4–2-NBDG NPs lead mesenchymal-like breast cancer cells to deep modification by 
hyperthermia. (a) a MDA-MB-231 cell in a co-culture environment, where no MNPs have been previously 
administered. The IR-laser focusing for 4:30 minutes, on the position indicated by the red cross, did not 
evidence any effect, as it can be seen by comparing the cell before (a) and after (b) irradiation. Scale bars: 
5 μ m. For details see Supplementary Movie 8. (c,d) few MDA-MB-231 cells and a MCF7 cell in a co-culture 
environment, after the administration of CoFe2O4–2-NBDG NPs, before (c) and after (d) the hyperthermia 
treatment. In (d) a cell shape modification provoked by the localized heating, for 4:30 minutes, can be 
appreciated. The continuous wave IR-laser beam was focused on MNPs (indicated by the red cross). Scale bars: 
20 μ m. For details see Supplementary Movie 4.
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could implement the current diagnostic techniques by simplifying and improving the mesenchymal-cancer state 
definition, as demonstrated by GLUT1 immunostaining.

In this work we provided advancements to the current knowledge by the development of a new metabolic 
assessment of cancer cells, based on the use of MNPs. In particular, we presented a successful functionalization 
of CoFe2O4 NPs with glucose molecules and its fluorescent analogue, the 2-NBDG, where the covalent linkage 
was confirmed by FTIR spectroscopy and fluorescence optical microscopy. The cobalt ferrite nanoparticles due 
to their higher magnetization characteristics, with respect to normal iron oxide nanoparticles39, and the low 
cytotoxicity exhibited may allow to decrease the concentrations and hence becoming suitable also for future in 
vivo applications. The added value of glucose shell could strongly boost the cancer-targeted therapy allowing to 
selectively penetrating the tumor and hence reducing the accumulation in non-pathological tissues.

The glucose functionalization of MNPs allowed us to target the more metabolic active breast cancer cell line, in 
vitro, discerning it from the less metabolic active one. Indeed, the GLUT1 overexpressing cell line (MDA-MB-231) 
internalized a statistically significant higher amount of glucose-coated MNPs, with respect to the MCF7 coun-
terpart, at both glucose medium concentrations assessed. Actually, the most remarkable result was obtained at 
25 mM concentration, since at this concentration, with respect to 5.5 mM glucose, the epithelial-like cells lost 
three/fourth of their ability to uptake glucose coated MNPs as a consequence of the reduced GLUT1 protein 
expression. Considering the GLUT1 binding affinity for glucose similar in the two cancer cell lines, results can be 
interpreted as a consequence of a different modulation of GLUT1 expression in the two cell lines as a consequence 
of changes in the glucose concentration. Even after GLUT1 inhibition, both with chemical and biological meth-
ods, a variable percentage in the range of 15 to 20% of cells still continued to internalize glucose-modified-MNPs. 
This behavior could be interpreted as to be associated with a non-GLUT1 dependent mechanism, introducing 
the possibility that also other Glut-family members could be important for the MNPs uptake mechanism. For 
instance GLUT3, GLUT14 and GLUT12 could be involved by observing their relative gene expression (see GEO 
dataset, GEO accession number: GSE41445) even if GLUT3 is known to be mainly involved in neurons and there 
are just few evidences about GLUT12 involvement in mammary tumors40.

By the use of SEM the MNPs uptake has been confirmed, at nanometer resolution, for both cell types. Focused 
Ion Beam (FIB) milling, as reported in Fig. 4, made precise investigation of cell cytoplasm and nucleus possi-
ble. The recurring occurrence observed, with each technique and confirmed by SEM analysis, was the presence 
of bigger MNPs aggregates on MDA-MB-231 cells and smaller ones on MCF7 at 5.5 mM glucose concentra-
tion. Considering this latter aspect, it could be hypothesized that at a glucose concentration of 25 mM, there is 
a low interaction of the membrane proteins (in particular glucose transporters) with the MNPs shell due to the 
glucose-demand saturation. The low interaction strength exerted by MCF7 cells towards MNPs confirms also the 
already described lower amount of GLUT1 protein expression, with respect to mesenchymal-like counterpart41.

Although our evidences strongly suggest that the internalization mechanism is Glut-protein dependent, it 
is however still unclear how MNPs cross the membrane. In some preliminary experiments we observed, by an 
immuno-staining study, a slight co-localization between MNPs and lysosome markers. Indeed endocytosis might 
be a more feasible way for metal nanoparticles to be internalized after interacting with glucose transporters. 
Nevertheless, further experiments are required to adequately address this hypothesis.

The GLUT1 selective inhibition obtained by STF-31 and gene silencing definitely helped in correlating the 
MNPs-specific uptake to the activity of this glucose transporter channel in both the tested cancer cell lines. 
However, the inhibition of MNPs uptake in the mesenchymal-like subtype required, with respect to that in MCF7 
cells, an increased STF-31 concentration (about twice) and incubation time (about 4 times), while by siRNA no 
concentration difference were required. Anyway, at the used concentration, STF-31 revealed a low cytotoxicity 
in both cell lines until 32 hours of incubation, leading to a marked cytotoxicity only after 72 hours of treatment 
(Supplementary Information Fig. 7).

In addition to their possible use to detect mesenchymal-like tumor cells, the peculiar tropism of glucose-coated 
MNPs for mesenchymal-like cells, suggest their employment in therapeutic applications such as in targeted 
hyperthermia treatments42. Based on this hypothesis, here we presented an IR-laser-guided way for single-cell 
localized overheating. MNPs absorbance in IR allowed transferring these effects to the cell cytoplasm and con-
sequently observing the cell reaction. Cell shape contractions, contour modifications, intra-cytoplasmic bubbles 
formation, cytoplasm rearrangements and cell death were the main observed occurrences (Supplementary Fig. 8 
and Supplementary Movies 4–7 for details). Control cells (not previously treated by MNPs), subjected to IR-laser 
beam irradiation both on cytoplasm and nucleus, did not show any damaging evidence during and after this 
procedure (Supplementary Movie 8).

A classic approach in the field of thermotherapy is the use of oscillating magnetic field with precise frequency 
(100 kHz–1 MHz) and intensity (10–50 mT). Effectively the combination of the low administered MNPs con-
centration and the related heating-caused effects, coupled with cancer live imaging techniques could convey 
a significant improvement in cancer field. In this work via the exploitation of glucose coated MNPs, we selec-
tively induced a localized heating on more metabolic active cells, the mesenchymal-like breast cancer cell line 
MDA-MB-231, providing interesting insights for future applications, especially because selectively targeting the 
population of cells considered more difficult to remove by conventional chemotherapy strategy because of an 
intrinsically enhanced drug-resistance. By consent, metal-based NPs are nowadays investigated for targeted heat-
ing therapy by the irradiation of precise areas with X-rays43. Due to the substantial metal-NPs to cell absorption 
ratio, in those wavelengths, several applications are now in development in order to face this challenge. The 
CoFe2O4–2-NBDG NPs developed in this work are perfectly in accordance with this front thanks to the low cyto-
toxicity exerted and the high tropism for the metabolic active cancer cells.

With the purpose to develop an implementation method for cancer diagnostic applications, here we also 
tested the glucose coated MNPs on WBCs obtained from healthy donors. WBC samples were incubated for 
2 hours in the presence of CoFe2O4–2-NBDG NPs in order to observe their uptake ability. Remarkably, WBCs 
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did not show any significant MNPs internalization (Supplementary Fig. 9), supporting the possible application 
of glucose-coated MNPs in in vitro assays aimed at specifically recognizing GLUT1-overexpressing CTCs. This 
possibility could further improve the current CTCs detection methods, since it focuses the attention on the mes-
enchymal population, considered to be characterized by cancer stem cell properties and thus truly responsible of 
tumor maintenance, recurrence and metastasis44.

In conclusion, we think we have developed MNPs able to specifically recognize tumor cell subpopulations tak-
ing advantage of their distinctive deregulated metabolic pathways (Warburg effect), confirming the link between a 
more aggressive mesenchymal-like phenotype and a higher demand of energy. This will open the way to develop 
inexpensive in vitro assays and in vivo therapeutic approaches aimed at specifically recognizing/targeting the 
population of tumor cells considered to be endowed with the highest metastatic and drug-resistance potential.

Methods
Synthesis and Characterization of CoFe2O4 NPs.  CoFe2O4 NPs were synthesized accordingly to 
Massart method45. The protocol was partially modified, as we previous described46, in order to have citrate-coated 
MNPs with improved stability in physiological solution, which are more suitable for cellular environment. The 
citrate coordination of MNPs was used for covalent functionalization of MNPs with glucose molecule and its flu-
orescent analogue, the 2-NBDG (Life Technologies). The esterification reaction between the free carboxylic group 
of citrate and the more reactive hydroxyl group on 2-NBDG molecule has been achieved using HCl as catalyzing 
agent. The normal D-glucose molecule was also used as control sample to confirm the successful functionaliza-
tion of the MNPs. The esterification was carried out by mixing 0.5 mg/mL of citrate-coated CoFe2O4 NPs with 
1:300 wt/wt aqueous solution of 14 mM 2-NBDG (26.6 mM for D-glucose) in the presence of HCl (3 mM). The 
solution was kept at room temperature under stirring for at least 2 hours, and then NPs were pelleted employing 
a permanent magnet, washed 3 times with a buffer solution (10 mM HEPES, 107 mM NaCl, 5.3 mM NaOH, pH 
7.4) and stored in bi-distilled water at 4 °C.

ATR–FTIR spectroscopy has been chosen to evaluate the CoFe2O4 NPs covalent functionalization. 
Measurements were carried out at the SISSI Beamline of the Elettra Synchrotron (Trieste, Italy) employing a 
Vertex 70 (Bruker®  Co.) purged with nitrogen and a DTGS (Deuterated Tri Glycine Sulfate) detector. MIRacle 
Single Reflection ATR box (PIKE Technologies) equipped with a diamond IRE (Internal Reflection Element) was 
used for experimental purposes. A 5 μ L drop of aqueous sample was placed onto the crystal and the measure-
ments were repeated until the combination band of bending and vibrational modes of liquid water (centered at 
0 ~ 2150 cm−1) disappeared. The background was collected on the clean IRE. Spectra were acquired averaging 128 
scans with a spectral resolution of 4 cm−1.

In order to assess the mean diameter distribution of the MNPs a SEM (Supra 450, Zeiss, Germany) analysis 
has been performed. MNPs samples were prepared by drying under nitrogen flux a drop of 1 μ M concentrated 
CoFe2O4 NPs on silica wafer. Samples were then washed twice with drops of milliQ water (electric resistance: 
18 mΩ ) and dried again by nitrogen blow. The SEM images were analyzed with the “Analyze Particles” tool of 
ImageJ47 for the NPs size evaluation after setting up their brightness/contrast parameters.

Cell lines culture.  MDA-MB-231 and MCF7 breast cancer cell lines were purchased from ATCC (ATCC 
numbers HTB-26 and HTB-22 respectively) and stored in liquid nitrogen. The phenotype of cultured cells has 
been evaluated by both flow-cytometry and immunofluorescence. The cells have been cultured in Dulbecco’s 
Modified Eagle Medium with 5.5 mM glucose (Low Glucose DMEM, Life Technologies) supplemented by a 10% 
Fetal Bovine Serum in a fully humidified atmosphere of 5% CO2 at 37 °C. To evaluate MNPs uptake and GLUT1 
expression, MCF-7 and MDA-MB-231 were cultured either in DMEM LG (Low-glucose, 5.5 mM) medium with 
10% fetal bovine serum or in DMEM HG (High-glucose DMEM 25 mM, Life Technologies) medium with 10% 
fetal bovine serum; cell culture medium was changed every 24 hours. The treatment in both standard and hyper-
glycemic conditions has been evaluated at 24 (T1) and 48 hours (T2).

Immunofluorescence analysis.  For immunofluorescence analyses, MDA-MB-231 and MCF7 cells were 
fixed in 4% buffered paraformaldehyde and permeabilized with 0.1% Triton X-100. Expression of vimentin (clone 
V9, Dako), cytokeratins 8–18–19 (clone 5D3, BioGenex), and the estrogen receptor alpha (clone SP1, ACZON) 
was evaluated by indirect immunofluorescence staining, using Alexa A555-labeled secondary antibodies. The 
Glucose Transporter GLUT1 was detected using an anti-GLUT-1 rabbit monoclonal antibody labeled with 
Alexa 647 dye (clone EPR3915, Abcam). DAPI was used to detect nuclei. All images were collected using a Leica 
DMI6000 B (Leica Microsystems, Germany) utilizing a 40X/63X oil immersion objective (numerical aperture: 
1.25 and 1.40 respectively), keeping constant the acquisition parameters. GLUT1 immunostaining was quantified 
by the ImageJ software. For each specified condition, all time points were evaluated in triplicate, calculating the 
mean fluorescence intensity of at least 300 cells.

Flow-cytometry analysis.  MCF7 and MDA-MB-231 were detached by Tryple-Express and incubated 
with the properly conjugated antibodies, following vendor instructions. Properly conjugated isotype-matched 
antibodies were used as a negative control. The analysis was performed by FACSCanto (BD Bioscience), See 
Supplementary Materials for details.

CoFe2O4 NPs Administration on Breast Cancer Cell Lines.  MNPs treatments were carried out on cells 
growth in either low or high glucose DMEM. After an incubation period of 24 hours, at 37 °C in a humidified 5% 
CO2 incubator. Cancer cells were treated for 2 hours with 2.5 μ g/mL of water dispersed CoFe2O4 solution. Finally, 
the cells were fixed in a 4% Paraformaldehyde (PFA) solution for 15 minutes at room temperature. Fixed MCF7, 
MDA-MB-231 and co-culture samples were washed with PBS and membranes permeabilized by 10 minutes incu-
bation with 0.1% TritonX-100 solution. Single cultures of MDA-MB-231 and MCF7 cells were labeled by 1:400 
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phalloidin (Rhodamine conjugated, λ ex =  555 nm, Life Technologies) to highlight actin filaments, and by DAPI 
to identify nuclei. On the contrary, co-culture samples were stained overnight at 4 °C with anti-E-cadherin anti-
body (1:100 rabbit, Dako) to specifically recognize epithelial cell membranes48. After incubation, samples were 
stained with a secondary anti-rabbit antibody, Cy-7 conjugated (donkey, Abcam). Nuclei were labeled by DAPI.

Microscopy Evaluation of CoFe2O4 NPs Uptake.  The fluorescence of CoFe2O4–2-NBDG NPs uptake 
by MDA-MB-231 and MCF7 cells have been assessed by a confocal laser microscope (DMRE, Leica, Germany) 
equipped with a 63X oil immersion objective (numerical aperture: 1.40) or a 40X oil immersion objective (numer-
ical aperture: 1.25). In order to cover the entire cell height, a range of about 3–4 μ m, for each sample, was captured 
by a z-stacking interval of 250 nm. The confocal microscopy technique has been chosen in order to associate the 
presence of MNPs (as fluorescence emitted by the 2-NBDG functionalizing agent) at the same focus plan of the 
actin filaments, allowing to confirm the MNPs internalization by the cells. The specific 2-NBDG excitation wave-
length is in the blue region (λ  =  480 nm), while the emission is in the green one (λ  =  510–550 nm)49. However, in 
the Figures MNPs are shown in the pseudocolor red to better appreciate their presence. The analysis of the total 
fluorescence content of each cell was performed by ImageJ “ROI Manager” after single-cell contour selection by 
the “freehand selection” tool, for each sample. The quantification was performed on the image reporting the aver-
age value of fluorescence in the 2-NBDG channel, relative to the total confocal images recorded. The fluorescence 
coefficient, Ct,n, has been calculated for treated (t) and non-treated (n) samples respectively:

∑= −C
N

Fluo Fluo1 ( ) (1)t n Cell Bk,

where, FluoCell represents the fluorescence intensity of a single selected cell for the channel related to the 
CoFe2O4–2-NBDG NPs emission, FluoBk is the background intensity corresponding to the same cell-contour 
area and N is the total number of analyzed cells (N =  200 cells from almost 20 regions, per sample). The uptake 
ratio, Ru, is then calculated as:

=
−R C C
C (2)u

t n

n

To evaluate the internalization of non-fluorescent MNPs, the Perls’ iron staining, that produces a 
Prussian-blue deposition in presence of reduced iron, was chosen50. The Perls’ iron staining has been carried out 
by a semi-automated instrument (Artysan™  Link Pro, Dako), on PFA-fixed samples either permeabilized or not 
by a membrane permeabilization procedure (10 minutes with a 0.1% TritonX-100 solution), in order to assess 
intracellular -or cell surface bound- MNPs, respectively (see Supplementary Fig. 5).

To assess the glucose function in MNPs uptake and so avoid possible 2-NBDG dye contribution, D-glucose 
and citrate coated CoFe2O4 NPs were used. The uptake process, for each MNPs functionalization type, has been 
tracked after 5, 15, 30, 60, 120, 180 and 240 minutes, in both glucose medium conditions. The samples were pre-
pared on duplicate and the experiments were repeated three times. The quantification of cells positive for inter-
nalized MNPs has been performed on pictures acquired via optical microscope (Leica DMD 108 equipped with a 
10×, 20× and 40× objectives, numerical aperture 0.40, 0.70 and 0.95, respectively). Cells were counted as positive 
in case of Prussian blue deposition (compatible as to be MNPs) regardless of the number of events per cell. The 
quantifications are reported as total counted Prussian-blue-cells respect to the total amount of cells in the area. 
At least 200 cells per sample were analyzed. ImageJ software was employed to overlay single-channel images and 
adjust the brightness/contrast settings, while to compose the final images Adobe Photoshop was utilized.

Uptake of MNPs investigated by SEM-FIB technique.  Breast cancer cell lines have been further ana-
lyzed at the nanometer level by SEM, to evaluate the presence on intracellular MNPs. Cell samples were fixed 
with 4% PFA for 15 minutes and dehydrated by increasing concentration of Et-OH (from 30% to 99.9%, pur-
chased from Sigma-Aldrich Co LLC). Samples were dried by gently nitrogen blow and coated with a 20 nm 
thick Chromium film by sputtering. Samples were transferred in a Cross Beam Microscope (Zeiss International, 
Germany) for Gallium Focused Ion Beam (FIB) precise milling and Scanning Electron Microscopy (SEM) inspec-
tion. The chromium coating, via sputtering, allowed delineating the cell morphology and afterward the FIB cuts 
were performed on random positions, onto cells, and on visible aggregates as well, in order to examine whether 
and where the MNPs were internalized.

Pharmacological inhibition of the Glucose Transporter Channel 1.  To inhibit GLUT1, breast cancer 
cell lines have been treated with the specific inhibitor STF-31 (Sigma-Aldrich Co. LLC). The evaluation of toxicity 
has been performed via the MTT assay, whereas the effect of STF-31 on NPs uptake was evaluated both by Perls’ 
iron staining and immuno-fluorescence microscopy as described above. The protocol followed for the STF-31 
toxicity evaluation is described in Supplementary Methods. The uptake inhibition effect has been observed at 
5 μ M and 10 μ M concentrated inhibitor in MCF7 and MDA-MB-231, respectively. The time points analyzed were 
2, 4, 6 and 8 hours for MCF7 and 8, 16, 24 and 32 hours for MDA-MB-231 and MNPs were added 2 hours before 
the PFA fixation for each time step. Each treatment was carried in 2 wells (in a 24 well-plate) and repeated 3 times.

Suppression of GLUT1 expression by siRNA delivery.  A validated siRNA against GLUT1 gene 
(SLC2A1, Invitrogen) was transfected into MDA-MB-231 and MCF-7 cells at a concentration of 10 nM. The 
cells were then transfected with the transfection reagent Lipofectamine 2000 (Invitrogen) in accordance with 
the manufacturer’s instructions. The transfection reagent and the GLUT1 siRNA were incubated with the cells 
in Opti-MEM® (reduced serum media, Gibco) for 72 hours. Control cells were incubated in the same volume of 
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transfection reagent with a control siRNA (Invitrogen). The samples were prepared on triplicate and the experi-
ments were repeated four times. Cellular levels of GLUT1 were quantified by immunofluorescence staining and 
FACS analysis (details are described in the previous paragraphs).

Cell Local Heating Through NPs Laser Beam Absorption.  A continuous-wave infrared (IR) laser 
beam (IPG Photonics) was focused through the microscope lens (Nikon, 60X water immersion objective, numer-
ical aperture: 1.25) onto the selected MNPs-bearing cell. The setup was built on a Nikon microscope (Eclipse 
TE2000-E, Nikon, Japan) and images recorded on CMOS camera (Hamamatsu ORCA-Flash 4.0). The wavelength 
of the laser was 1064 nm, for which cell adsorption is minimum. In each recorded movie an IR filter was inserted 
in order to better appreciate the effects caused by the laser. It was, moreover, used to avoid the IR-laser entrance 
into recording device and thus allowing good video quality. The power on the sample has been regulated from 0 
to 15 mW to evaluate the increasing outcomes. Cobalt ferrite nanoparticles absorbance in IR is lower than visible 
or UV wavelength51 but in the same time much higher than that of the cells52.

Statistics.  Data were tested for normal distribution using the Kolmogorov-Smirnov test and therefore 
characteristics of the population have been described using means ±  standard deviation. Paired T-test or 
unpaired test, as appropriate, was used to compare continuous variables between two groups. One-way Anova 
followed by Bonferroni post-test were used to compare more than two groups. Two-way Anova followed by 
Bonferroni post-test was employed to evaluate the effects of both incubation time and glucose concentration on 
STF31-treated breast cancer cell lines. P values less than 0.05 were considered significant (Prism, version 4.0c).
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