268 research outputs found

    Towards fabrication of ordered gallium nanostructures by laser manipulation of neutral atoms: study of self-assembling phenomena

    Full text link
    Surface diffusion has an impact on the lateral resolution of nanostructures in bottom-up atom nanofabrication. In this paper we study the effects of the gallium atoms self-assembled on silicon surfaces (100) patterned with trenches at different slopes. These particular substrate morphologies have been made to enable an effective deposition rate variation along the surface. In this way we experimentally mimic the effect of the atomic flux modulation created by standing wave during an atom nanofabrication experiment. Even if we observe self organization of gallium atoms on the surface, we conclude that the nano-islands are not affected by surface diffusion processes and the effective variation of the deposition rate per unit area is the dominant factor affecting the growth differences along the surface. This result demonstrates that the gallium atoms self-organization should not prevent the observation of a periodic nano-patterning created by atom nano-fabrication techniques.Comment: 7 pages, 5 figures, EMRS conference procee

    Relative echogenicity of tendons and ligaments of the palmar metacarpal region in foals from birth to 4 months of age: A longitudinal study

    Get PDF
    The objective of this study was to evaluate relative echogenicity of superficial and deep digital flexor tendons, the accessory ligament of the deep digital flexor tendon and interosseous muscle of the metacarpal region in foals ages 1 week to 4 months; and assess the association between echogenicity and sex or side/laterality. Seven Standardbred trotter foals were examined. Right and left metacarpal regions (palmar surface) were ultrasonographically investigated, and four regions of interest were assessed. A significant increase in echogenicity was seen in superficial and deep digital flexor tendons, accessory ligament of deep digital flexor tendon, and interosseous muscle during growth from 1 week to 4 months of age. Echogenicity of examined tendons and ligaments was not influenced by gender nor laterality. Reference values for tendon and ligament echogenicity could function as a tool to discriminate between physiological and abnormal conditions such as congenital contractural conditions

    Correlating electron trapping and structural defects in Al2O3 thin films deposited by plasma enhanced atomic layer deposition

    Get PDF
    In this article, electron trapping in aluminum oxide (Al2O3) thin films grown by plasma enhanced atomic layer deposition on AlGaN/GaN heterostructures has been studied and a correlation with the presence of oxygen defects in the film has been provided. Capacitance–voltage measurements revealed the occurrence of a negative charge trapping effect upon bias stress, able to fill an amount of charge traps in the bulk Al2O3 in the order of 5 × 1012 cm−2. A structural analysis based on electron energy-loss spectroscopy demonstrated the presence of low-coordinated Al cations in the Al2O3 film, which is an indication of oxygen vacancies, and can explain the electrical behavior of the film. These charge trapping effects were used for achieving thermally stable (up to 100 °C) enhancement mode operation in AlGaN/GaN transistors, by controlling the two-dimensional electron gas depletion

    1H-NMR Spectroscopy Coupled with Chemometrics to Classify Wines According to Different Grape Varieties and Different Terroirs

    Get PDF
    In this study, 1H-NMR spectroscopy coupled with chemometrics was applied to study the wine metabolome and to classify wines according to different grape varieties and different terroirs. By obtaining the metabolomic fingerprinting and profiling of the wines, it was possible to assess the metabolic biomarkers leading the classification (i.e., phenolic compounds, aroma compounds, amino acids, and organic acids). Moreover, information about the influence of the soil in shaping wine metabolome was obtained. For instance, the relationship between the soil texture and the content of amino acids and organic acids in wines was highlighted. The analysis conducted in this study allowed extraction of relevant spectral information not only from the most populated and concentrated spectral areas (e.g., aliphatic and carbinolic areas), but also from crowded spectral areas held by lowly concentrated compounds (i.e., polyphenols). This may be due to a successful combination between the parameters used for data reduction, preprocessing and elaboration. The metabolomic fingerprinting also allowed exploration of the H-bonds network inside the wines, which affects both gustatory and olfactory perceptions, by modulating the way how solutes interact with the human sensory receptors. These findings may have important implications in the context of food traceability and quality control, providing information about the chemical composition and biomolecular markers from a holistic point of view

    Haplotypes in SLC24A5 Gene as Ancestry Informative Markers in Different Populations

    Get PDF
    Ancestry informative markers (AIMs) are human polymorphisms that exhibit substantially allele frequency differences among populations. These markers can be useful to provide information about ancestry of samples which may be useful in predicting a perpetrator’s ethnic origin to aid criminal investigations. Variations in human pigmentation are the most obvious phenotypes to distinguish individuals. It has been recently shown that the variation of a G in an A allele of the coding single-nucleotide polymorphism (SNP) rs1426654 within SLC24A5 gene varies in frequency among several population samples according to skin pigmentation. Because of these observations, the SLC24A5 locus has been evaluated as Ancestry Informative Region (AIR) by typing rs1426654 together with two additional intragenic markers (rs2555364 and rs16960620) in 471 unrelated individuals originating from three different continents (Africa, Asia and Europe). This study further supports the role of human SLC24A5 gene in skin pigmentation suggesting that variations in SLC24A5 haplotypes can correlate with human migration and ancestry. Furthermore, our data do reveal the utility of haplotype and combined unphased genotype analysis of SLC24A5 in predicting ancestry and provide a good example of usefulness of genetic characterization of larger regions, in addition to single polymorphisms, as candidates for population-specific sweeps in the ancestral population

    Cardiac involvement in systemic sclerosis: identification of high-risk patient profiles in different patterns of clinical presentation

    Get PDF
    Systemic sclerosis (SSc) is a chronic connective tissue disease characterized by widespread microvascular damage, dysregulation of fibroblasts with collagen overproduction and excessive fibrosis of the skin and internal organs, as well as complex immune system abnormalitie\u2026

    Whole genome amplification and real-time PCR in forensic casework

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WGA (Whole Genome Amplification) in forensic genetics can eliminate the technical limitations arising from low amounts of genomic DNA (gDNA). However, it has not been used to date because any amplification bias generated may complicate the interpretation of results. Our aim in this paper was to assess the applicability of MDA to forensic SNP genotyping by performing a comparative analysis of genomic and amplified DNA samples. A 26-SNPs TaqMan panel specifically designed for low copy number (LCN) and/or severely degraded genomic DNA was typed on 100 genomic as well as amplified DNA samples.</p> <p>Results</p> <p>Aliquots containing 1, 0.1 and 0.01 ng each of 100 DNA samples were typed for a 26-SNPs panel. Similar aliquots of the same DNA samples underwent multiple displacement amplification (MDA) before being typed for the same panel. Genomic DNA samples showed 0% PCR failure rate for all three dilutions, whilst the PCR failure rate of the amplified DNA samples was 0% for the 1 ng and 0.1 ng dilutions and 0.077% for the 0.01 ng dilution. The genotyping results of both the amplified and genomic DNA samples were also compared with reference genotypes of the same samples obtained by direct sequencing. The genomic DNA samples showed genotype concordance rates of 100% for all three dilutions while the concordance rates of the amplified DNA samples were 100% for the 1 ng and 0.1 ng dilutions and 99.923% for the 0.01 ng dilution. Moreover, ten artificially-degraded DNA samples, which gave no results when analyzed by current forensic methods, were also amplified by MDA and genotyped with 100% concordance.</p> <p>Conclusion</p> <p>We investigated the suitability of MDA material for forensic SNP typing. Comparative analysis of amplified and genomic DNA samples showed that a large number of SNPs could be accurately typed starting from just 0.01 ng of template. We found that the MDA genotyping call and accuracy rates were only slightly lower than those for genomic DNA. Indeed, when 10 pg of input DNA was used in MDA, we obtained 99.923% concordance, indicating a genotyping error rate of 1/1299 (7.7 × 10<sup>-4</sup>). This is quite similar to the genotyping error rate of STRs used in current forensic analysis. Such efficiency and accuracy of SNP typing of amplified DNA suggest that MDA can also generate large amounts of genome-equivalent DNA from a minimal amount of input DNA. These results show for the first time that MDA material is suitable for SNP-based forensic protocols and in general when samples fail to give interpretable STR results.</p

    Effect of leukocyte-reduced platelet-rich plasma on osteoarthritis caused by cranial cruciate ligament rupture: A canine gait analysis model

    Get PDF
    The goal of this study was to objectively assess the effect of a platelet-rich plasma (PRP) derivate in English bulldogs with stifle degenerative joint disease secondary to cranial cruciate ligament rupture (CCLR). We used a force platform and affixed electrogoniometers to measure peak vertical force (PVF), vertical impulse (VI), stance time (ST), and angular range of motion (AROM), from 12 lame client-owned English bulldogs with post-CCLR stifle joint abnormalities. The 12 affected subjects were treated with 4 intra-articular injections of PRP, at 30-day intervals. Ten untreated, sound English bulldogs were used as a reference group. Clinical outcomes were evaluated using a linear mixed effects model. Mean values of PVF, VI, ST, and AROM were improved within the first 3 months post-treatment in the CCLR group, with mean measured changes increasing to maximum 4.56% body weight gain, 1.5% body weight/second, 0.07 seconds, and 6.18 degrees, respectively. The effects declined progressively after the treatment interval, ending at nearly initial levels after 6 months. This study demonstrates that dogs with CCLR treated with intra-articular PRP had improved PVF, VI, ST, and AROM over time; the duration of effect was waning by the end of the post-treatment period

    In silico and in vitro comparative analysis to select, validate and test SNPs for human identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent advances in human genetics have recently provided new insights into phenotypic variation and genome variability. Current forensic DNA techniques involve the search for genetic similarities and differences between biological samples. Consequently the selection of ideal genomic biomarkers for human identification is crucial in order to ensure the highest stability and reproducibility of results.</p> <p>Results</p> <p>In the present study, we selected and validated 24 SNPs which are useful in human identification in 1,040 unrelated samples originating from three different populations (Italian, Benin Gulf and Mongolian). A Rigorous <it>in silico </it>selection of these markers provided a list of SNPs with very constant frequencies across the populations tested as demonstrated by the F<sub>st </sub>values. Furthermore, these SNPs also showed a high specificity for the human genome (only 5 SNPs gave positive results when amplified in non-human DNA).</p> <p>Conclusion</p> <p>Comparison between <it>in silico </it>and <it>in vitro </it>analysis showed that current SNPs databases can efficiently improve and facilitate the selection of markers because most of the analyses performed (F<sub>st</sub>, r<sup>2</sup>, heterozigosity) in more than 1,000 samples confirmed available population data.</p
    • …
    corecore