22 research outputs found

    A Multicenter Retrospective Survey regarding Diabetic Ketoacidosis Management in Italian Children with Type 1 Diabetes

    Get PDF
    We conducted a retrospective survey in pediatric centers belonging to the Italian Society for Pediatric Diabetology and Endocrinology. The following data were collected for all new-onset diabetes patients aged 0-18 years: DKA (pH < 7.30), severe DKA (pH < 7.1), DKA in preschool children, DKA treatment according to ISPAD protocol, type of rehydrating solution used, bicarbonates use, and amount of insulin infused. Records (n = 2453) of children with newly diagnosed diabetes were collected from 68/77 centers (87%), 39 of which are tertiary referral centers, the majority of whom (n = 1536, 89.4%) were diagnosed in the tertiary referral centers. DKA was observed in 38.5% and severe DKA in 10.3%. Considering preschool children, DKA was observed in 72%, and severe DKA in 16.7%. Cerebral edema following DKA treatment was observed in 5 (0.5%). DKA treatment according to ISPAD guidelines was adopted in 68% of the centers. In the first 2 hours, rehydration was started with normal saline in all centers, but with different amount. Bicarbonate was quite never been used. Insulin was infused starting from third hour at the rate of 0.05-0.1 U/kg/h in 72% of centers. Despite prevention campaign, DKA is still observed in Italian children at onset, with significant variability in DKA treatment, underlying the need to share guidelines among centers

    Intragenic KANSL1 mutations and chromosome 17q21.31 deletions: broadening the clinical spectrum and genotype-phenotype correlations in a large cohort of patients

    Full text link
    BACKGROUND: The 17q21.31 deletion syndrome phenotype can be caused by either chromosome deletions or point mutations in the KANSL1 gene. To date, about 60 subjects with chromosome deletion and 4 subjects with point mutation in KANSL1 have been reported. Prevalence of chromosome deletions compared with point mutations, genotype-phenotype correlations and phenotypic variability have yet to be fully clarified. METHODS: We report genotype-phenotype correlations in 27 novel subjects with 17q21.31 deletion and in 5 subjects with KANSL1 point mutation, 3 of whom were not previously reported. RESULTS: The prevalence of chromosome deletion and KANSL1 mutation was 83% and 17%, respectively. All patients had similar clinical features, with the exception of macrocephaly, which was detected in 24% of patients with the deletion and 60% of those with the point mutation, and congenital heart disease, which was limited to 35% of patients with the deletion. A remarkable phenotypic variability was observed in both categories, mainly with respect to the severity of ID. Cognitive function was within normal parameters in one patient in each group. Craniosynostosis, subependymal heterotopia and optic nerve hypoplasia represent new component manifestations. CONCLUSIONS: In KANSL1 haploinsufficiency syndrome, chromosome deletions are greatly prevalent compared with KANSL1 mutations. The latter are sufficient in causing the full clinical phenotype. The degree of intellectual disability (ID) appears to be milder than expected in a considerable number of subjects with either chromosome deletion or KANSL1 mutation. Striking clinical criteria for enrolling patients into KANSL1 analysis include speech delay, distinctive facial dysmorphism, macrocephaly and friendly behaviour

    The LCA methodology for ceramic tiles production by addition of MSWI BA

    No full text
    Integrated waste management and sustainable use of natural resources are the basis of the Green Economy. In this context, the management of the Municipal Solid Waste Incineration Bottom Ashes (MSWI BA) is one of the current issue worldwide. This paper presents an application of the Life Cycle Assessment (LCA) procedure to the industrial production of ceramic tiles using bottom ashes in the mixture together with feldspathic sands and clays. The comparison between ashes and traditional mixture showed a similar mineralogical and rheological composition. In the reported procedure the MSWI BA, after storage, were treated to separate and to recover metals. The residual ashes were added to the mixture and then they followed the traditional industrial production cycle. Samples of the different materials were taken during the experimental industrial activity and leaching tests were carried out to verify the environmental compatibility of MSWI BA use to produce ceramic tiles. Results of the LCA show large environmental and energy benefits related to the proposed reuse of BA. Metals recovery and lower use of clay in traditional mixture allow to avoid emission of substances with a negative potential impact for environment. This study provides a sustainable alternative to the MSWI BA final disposal in landfill. In fact, MSWI BA are hazardous wastes which present complicated management and high disposal costsIntegrated waste management and sustainable use of natural resources are the basis of the Green Economy. In this context, the management of the Municipal Solid Waste Incineration Bottom Ashes (MSWI BA) is one of the current issues worldwide. This paper presents an application of the Life Cycle Assessment (LCA) procedure to the industrial production of ceramic tiles using bottom ashes in the mixture together with feldspathic sands and clays. The comparison between ashes and traditional mixture showed a similar mineralogical and rheological composition. In the reported procedure the MSWI BA, after storage, were treated to separate and recover metals. The residual ashes were added to the mixture and then they followed the traditional industrial production cycle. Samples of the different materials were taken during the experimental industrial activity and leaching tests were carried out to verify the environmental compatibility of MSWI BA use to produce ceramic tiles. The results of the LCA show large environmental and energy benefits related to the proposed reuse of BA. Metal recovery and lower use of clay in traditional mixture avoids emission of substances with a negative potential impact for environment. This study provides a sustainable alternative to the MSWI BA final disposal in landfill as MSWI BA are hazardous wastes that present complicated management and high disposal costs
    corecore