112 research outputs found

    High precision simulations of weak lensing effect on Cosmic Microwave Background polarization

    Get PDF
    We study accuracy, robustness and self-consistency of pixel-domain simulations of the gravitational lensing effect on the primordial CMB anisotropies due to the large-scale structure of the Universe. In particular, we investigate dependence of the results precision on some crucial parameters of such techniques and propose a semi-analytic framework to determine their values so the required precision is a priori assured and the numerical workload simultaneously optimized. Our focus is on the B-mode signal but we discuss also other CMB observables, such as total intensity, T, and E-mode polarization, emphasizing differences and similarities between all these cases. Our semi-analytic considerations are backed up by extensive numerical results. Those are obtained using a code, nicknamed lenS2HAT -- for Lensing using Scalable Spherical Harmonic Transforms (S2HAT) -- which we have developed in the course of this work. The code implements a version of the pixel-domain approach of Lewis (2005) and permits performing the simulations at very high resolutions and data volumes, thanks to its efficient parallelization provided by the S2HAT library -- a parallel library for a calculation of the spherical harmonic transforms. The code is made publicly available.Comment: 20 pages, 14 figures, submitted to A&A, matches version accepted for publication in A&

    CMB spectral distortions revisited: a new take on μ\mu distortions and primordial non-Gaussianities from FIRAS data

    Get PDF
    Deviations from the blackbody spectral energy distribution of the CMB are a precise probe of physical processes active both in the early universe (such as those connected to particle decays and inflation) and at later times (e.g. reionization and astrophysical emissions). Limited progress has been made in the characterization of these spectral distortions after the pioneering measurements of the FIRAS instrument on the COBE satellite in the early 1990s, which mainly targeted the measurement of their average amplitude across the sky. Since at present no follow-up mission is scheduled to update the FIRAS measurement, in this work we re-analyze the FIRAS data and produce a map of μ\mu-type spectral distortion across the sky. We provide an updated constraint on the μ\mu distortion monopole ∣⟨μ⟩∣<47×10−6|\langle\mu\rangle|<47\times 10^{-6} at 95\% confidence level that sharpens the previous FIRAS estimate by a factor of ∼2\sim 2. We also constrain primordial non-Gaussianities of curvature perturbations on scales 10≲k≲5×10410\lesssim k\lesssim 5\times 10^4 through the cross-correlation of μ\mu distortion anisotropies with CMB temperature and, for the first time, the full set of polarization anisotropies from the Planck satellite. We obtain upper limits on fNL≲3.6×106f_{\rm NL}\lesssim 3.6 \times 10^6 and on its running nNL≲1.4n_{\rm NL}\lesssim 1.4 that are limited by the FIRAS sensitivity but robust against galactic and extragalactic foreground contaminations. We revisit previous similar analyses based on data of the Planck satellite and show that, despite their significantly lower noise, they yield similar or worse results to ours once all the instrumental and astrophysical uncertainties are properly accounted for. Our work is the first to self-consistently analyze data from a spectrometer and demonstrate the power of such instrument to carry out this kind of science case with reduced systematic uncertainties.Comment: Comments welcome, data will be made available upon acceptanc

    DEMNUni: The imprint of massive neutrinos on the cross-correlation between cosmic voids and CMB lensing

    Full text link
    Cosmic voids are a powerful probe of cosmology and are one of the core observables of upcoming galaxy surveys. The cross-correlations between voids and other large-scale structure tracers such as galaxy clustering and galaxy lensing have been shown to be very sensitive probes of cosmology and among the most promising to probe the nature of gravity and the neutrino mass. However, recent measurements of the void imprint on the lensed Cosmic Microwave Background (CMB) have been shown to be in tension with expectations based on LCDM simulations, hinting to a possibility of non-standard cosmological signatures due to massive neutrinos. In this work we use the DEMNUni cosmological simulations with massive neutrino cosmologies to study the neutrino impact on voids selected in photometric surveys, e.g. via Luminous Red Galaxies, as well as on the void- CMB lensing cross-correlation. We show how the void properties observed in this way (size function, profiles) are affected by the presence of massive neutrinos compared to the neutrino massless case, and show how these can vary as a function of the selection method of the void sample. We comment on the possibility for massive neutrinos to be the source of the aforementioned tension. Finally, we identify the most promising setup to detect signatures of massive neutrinos in the voids-CMB lensing cross-correlation and define a new quantity useful to distinguish among different neutrino masses by comparing future observations against predictions from simulations including massive neutrinos.Comment: 34 pages, 15 figure

    Planck integrated Sachs-Wolfe-lensing likelihood and the CMB temperature

    Get PDF
    We present a new Planck CMB lensing-CMB temperature cross-correlation likelihood that can be used to constrain cosmology via the integrated Sachs-Wolfe (ISW) effect. CMB lensing is an excellent tracer of ISW, and we use the latest PR4 Planck data maps and lensing reconstruction to produce the first public Planck likelihood to constrain this signal. We demonstrate the likelihood by constraining the CMB background temperature from Planck data alone, where the ISW-lensing cross-correlation is a powerful way to break the geometric degeneracy, substantially improving constraints from the CMB and lensing power spectra alone

    Iterative map-making with two-level preconditioning for polarized cosmic microwave background data sets. A worked example for ground-based experiments

    Get PDF
    An estimation of the sky signal from streams of Time Ordered Data (TOD) acquired by Cosmic Microwave Background (cmb) experiments is one of the most important steps in the context of cmb data analysis referred to as the map-making problem. The continuously growing cmb data sets render the cmb map-making problem more challenging in terms of computational cost and memory in particular in the context of ground based experiments. In this context, we study a novel class of the Preconditioned Conjugate Gradient (PCG) solvers which invoke two-level preconditioners. We compare them against PCG solvers commonly used in the map-making context considering their precision and time-to-solution. We compare these new methods on realistic, simulated data sets reflecting the characteristics of current and forthcoming cmb ground-based experiment. We develop an embarrassingly parallel implementation of the approach where each processor performs a sequential map-making for a subset of the TOD. We find that considering the map level residuals the new class of solvers permits achieving tolerance of up to 3 orders of magnitude better than the standard approach, where the residual level often saturates before convergence is reached. This corresponds to an important improvement in the precision of recovered power spectra in particular on the largest angular scales. The new method also typically requires fewer iterations to reach a required precision and thus shorter runtimes for a single map-making solution. However, the construction of an appropriate two-level preconditioner can be as costly as a single standard map-making run. Nevertheless, if the same problem needs to be solved multiple times, e.g., as in Monte Carlo simulations, this cost has to be incurred only once, and the method should be competitive not only as far as its precision but also its performance is concerned

    Instrumental systematics biases in CMB lensing reconstruction: a simulation-based assessment

    Get PDF
    Weak gravitational lensing of the cosmic microwave background (CMB) is an important cosmological tool that allows us to learn about the structure, composition and evolution of the Universe. Upcoming CMB experiments, such as the Simons Observatory (SO), will provide high-resolution and low-noise CMB measurements. We consider the impact of instrumental systematics on the corresponding high-precision lensing reconstruction power spectrum measurements. We simulate CMB temperature and polarization maps for an SO-like instrument and potential scanning strategy, and explore systematics relating to beam asymmetries and offsets, boresight pointing, polarization angle, gain drifts, gain calibration and electric crosstalk. Our analysis shows that the majority of the biases induced by the systematics we modeled are below a detection level of ∼0.6σ. We discuss potential mitigation techniques to further reduce the impact of the more significant systematics, and pave the way for future lensing-related systematics analyses

    A machine learning approach to mapping baryons on to dark matter haloes using the eagle and C-EAGLE simulations

    Get PDF
    High-resolution cosmological hydrodynamic simulations are currently limited to relatively small volumes due to their computational expense. However, much larger volumes are required to probe rare, overdense environments, and measure clustering statistics of the large scale structure. Typically, zoom simulations of individual regions are used to study rare environments, and semi-analytic models and halo occupation models applied to dark matter only (DMO) simulations are used to study the Universe in the large-volume regime. We propose a new approach, using a machine learning framework to explore the halo-galaxy relationship in the periodic EAGLE simulations, and zoom C-EAGLE simulations of galaxy clusters. We train a tree based machine learning method to predict the baryonic properties of galaxies based on their host dark matter halo properties. The trained model successfully reproduces a number of key distribution functions for an infinitesimal fraction of the computational cost of a full hydrodynamic simulation. By training on both periodic simulations as well as zooms of overdense environments, we learn the bias of galaxy evolution in differing environments. This allows us to apply the trained model to a larger DMO volume than would be possible if we only trained on a periodic simulation. We demonstrate this application using the (800 Mpc)3 P-Millennium simulation, and present predictions for key baryonic distribution functions and clustering statistics from the EAGLE model in this large volume

    A Hierarchy of Normalizing Flows for Modelling the Galaxy-Halo Relationship

    Full text link
    Using a large sample of galaxies taken from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project, a suite of hydrodynamic simulations varying both cosmological and astrophysical parameters, we train a normalizing flow (NF) to map the probability of various galaxy and halo properties conditioned on astrophysical and cosmological parameters. By leveraging the learnt conditional relationships we can explore a wide range of interesting questions, whilst enabling simple marginalisation over nuisance parameters. We demonstrate how the model can be used as a generative model for arbitrary values of our conditional parameters; we generate halo masses and matched galaxy properties, and produce realisations of the halo mass function as well as a number of galaxy scaling relations and distribution functions. The model represents a unique and flexible approach to modelling the galaxy-halo relationship.Comment: 8 pages, 2 figures, accepted for ICML 2023 Workshop on Machine Learning for Astrophysic

    Quaia, the Gaia-unWISE quasar catalog: an all-sky spectroscopic quasar sample

    Get PDF
    We present a new, all-sky quasar catalog, Quaia, that samples the largest comoving volume of any existing spectroscopic quasar sample. The catalog draws on the 6,649,162 quasar candidates identified by the Gaia mission that have redshift estimates from the space observatory’s low-resolution blue photometer/red photometer spectra. This initial sample is highly homogeneous and complete, but has low purity, and 18% of even the bright (G 0.2) compared to those from the Sloan Digital Sky Survey (SDSS). In this work, we combine the Gaia candidates with unWISE infrared data (based on the Wide-field Infrared Survey Explorer survey) to construct a catalog useful for cosmological and astrophysical quasar studies. We apply cuts based on proper motions and colors, reducing the number of contaminants by approximately four times. We improve the redshifts by training a k-Nearest Neighbor model on SDSS redshifts, and achieve estimates on the G 0.2 (0.1), a reduction of approximately three times (approximately two times) compared to the Gaia redshifts. The final catalog has 1,295,502 quasars with G < 20.5, and 755,850 candidates in an even cleaner G < 20.0 sample, with accompanying rigorous selection function models. We compare Quaia to existing quasar catalogs, showing that its large effective volume makes it a highly competitive sample for cosmological large-scale structure analyses. The catalog is publicly available at 10.5281/zenodo.10403370
    • …
    corecore